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A B S T R A C T

The mapping of soils in Africa is at least a century old. We currently have access to various maps depicting
mapping units locally and for the continent. In the past two decades, there has been a growing interest in
alternatives for generating soil maps through digital soil mapping (DSM) techniques. There are, however,
numerous challenges pertaining to the implementation of DSM in Africa, such as the unavailability of
appropriate covariates, age and positional error in the measurements, low sampling density, and spatial
clustering of the soil data used to fit and validate the models. This review aims to investigate the current
state of DSM in Africa, identify challenges specific to implementing DSM in Africa and the ways it has been
solved in the literature. We found that nearly half of African countries had an existing digital soil map covering
either a local or national area, and that most studies were performed at a local extent. Soil carbon was the
most common property under study, whereas soil hydraulic variables were seldom reported. Nearly all studies
performed mapping for the topsoil up to 30 cm and calculated validation statistics using existing datasets but
without collecting a post-mapping probability sample. Few studies (i.e., 11%) reported an estimate of map
uncertainty. Half of the studies had in mind a downstream application (e.g., soil fertility assessment) in the
map generation. We further correlated the area of study and sampling density and found a strong negative
relationship. About 30% of the studies relied on legacy soil datasets and had a lack of sufficient spatial coverage
of their area of study. From this review, we highlight some research opportunities and suggest improvements in
the current methodologies. Future research should focus on capacity building in DSM, new data collection, and
legacy data rescue. New initiatives, that should be initiated and led from within the continent, could support
the long-term monitoring of soils and updating of soil information systems while ensuring their contextualised
usability. This pairs with better delivery of existing DSM studies to stakeholders and the generation of a
value-added proposition to governmental institutions.
1. Introduction

The mapping of soils in Africa is at least a century old. In 1923,
Shantz et al. (1923) created a map that depicted vegetation and soil
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mapping units for the continent. Later, several maps of soil for small
localities (e.g., Hornby, 1938; Trapnell and Clothier, 1937; Trapnell
et al., 1948) or large geographical areas were created (e.g., Baeyens,
1938; FAO-UNESCO, 1977; Van Ranst et al., 2010). One of the most
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comprehensive soil maps covering the continent is the polygon map
from the FAO/UNESCO (FAO-UNESCO, 1977). The report that accom-
panies the FAO soil map of Africa reveals the diversity of soils spanning
Africa: Yermosols in the arid zones of Northern Africa, Xerosols across
South Africa and Namibia, Vertisols covering Ethiopia and South-
Sudan, or Fluvisols in central Africa (Cameroon and Central African
Republic). The report also gave information on the soil suitability for
crops and cultivation and concluded that highly fertile soils, suitable
for crop cultivation, are mostly located across tropical areas. Such
soils are, for example, Luvisols in West Africa (Nigeria, Benin, Ghana)
and Cambisols in North Africa (northern Morocco, northern Algeria
and Tunisia). In the last decade, new initiatives have built upon the
FAO/UNESCO map and have attempted to provide new insights into
the distribution and variety of soil types and properties in Africa, some
recent examples include the Soil Atlas of Africa (Jones et al., 2013), the
harmonised soil map of Africa at the continental scale (Dewitte et al.,
2013), and the recent harmonised soil property values for broad-scale
modelling (WISE30sec, Batjes, 2016). A recent overview of legacy soil
maps compilation for the continent can also be found in Arrouays et al.
(2017). In most cases, however, soils were arranged into homogeneous
or association classes using polygon map units.

While historical polygon-based or legacy soil maps offer advan-
tages for both coarse and fine-scale applications - such as identifying
areas suitable for agriculture or quantifying agricultural productivity
- they exhibit several limitations (Van Ranst et al., 2010). They are
usually generated using conceptual soil-landscape knowledge that may
not be consistent amongst surveyors. Also, soil polygon maps provide
aggregated soil information over broad areas and are not intended to
directly provide detailed point-specific values of soil chemical, physical,
and biological properties (Scull et al., 2003; Lagacherie et al., 2006).
Finally, there is usually no quantitative estimate of the accuracy of
the polygon-based soil maps, making them insufficient for practitioners
and multidisciplinary environmental studies, which require an estimate
of the level of confidence that we have about the map. In parallel,
there is a growing demand for quantitative digital information on soil
properties to inform private landowners, land managers, modellers
(e.g., crop and hydrology modellers), policy and decision makers.
Integrating polygon maps into current and future modelling studies
that require grid-based quantitative estimates of soil properties can be
challenging (Hartemink et al., 2010).

An approach which addresses the limitations of polygon-based maps
is digital soil mapping (DSM), where empirical models are fitted be-
tween measurements of soil properties and a set of environmental
covariates. The covariates represent the various scorpan factors which
can be used as a basis for the spatial prediction of soil properties and
classes, and in which 𝑠 stands for soil, 𝑐 for climate, 𝑜 for organism,
𝑟 for relief, 𝑝 for parent material, 𝑎 for age and 𝑛 for geographical
ocation (McBratney et al., 2003). The empirical relationship can be
itted with conventional statistical models (e.g., linear and non-linear
egression, generalised linear models, generalised additive models),
eostatistics (e.g., ordinary kriging, linear model of co-regionalisation),
achine learning or deep learning algorithms (e.g., regression tree
odels, artificial neural network), ensemble of predictive algorithms,

r a combination thereof.
Perusal of the literature shows that DSM has gained increasing

ttention in Africa. Examples of DSM studies are Kempen (2005),
ambule et al. (2013), Were et al. (2016), Chabala et al. (2017),
ounkpatin et al. (2018b), Leenaars et al. (2020) and Takoutsing et al.

2022) for landscape-scale (i.e., 500 to 15,000 km2), Ugbaje and Reuter
2013), Omuto (2013), Chabala et al. (2014), Ramifehiarivo et al.
2017), Venter et al. (2021), Bahri et al. (2022) and Ali et al. (2024)
nd Silatsa et al. (2020) for larger areas, such as a nation, and Hengl
t al. (2015), Vågen et al. (2016), Hengl et al. (2017a) and Leenaars
t al. (2018) and Hengl et al. (2021b) for the whole continent. For
small geographical area, Kempen (2005) made a map of the spatial
istribution of soil organic carbon (SOC) in the Nioro du Rip catchment
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in Senegal with a grid spacing of 30 m using a classification tree.
At a national extent, Ugbaje and Reuter (2013) predicted numerous
soil properties (i.e., sand, clay, bulk density, and available water con-
tent) in Nigeria with a grid spacing of 100 m using a regression
tree cubist model coupled with kriging of the residuals. In addition,
countrywide predictions of soil organic carbon stocks were produced
for several countries, for instance, Nigeria, Madagascar, Ghana, and
Cameroon (Akpa et al., 2016a; Ramifehiarivo et al., 2017; Owusu et al.,
2020; Silatsa et al., 2020). At the continental scale, Leenaars et al.
(2018) made maps of rootable depth and root zone plant-available
water holding capacity at 250 m resolution, while Hengl et al. (2021b)
made maps of several soil properties (e.g., SOC, pH, total nitrogen,
and exchangeable basis) at 30 m resolution. Among other findings,
these studies concluded that implementing DSM for Africa was chal-
lenging for several reasons, including the unavailability of appropriate
covariates, poor soil-covariate structure, age and positional error in the
measurement, and the low sampling density used to build the models.

There are, indeed, several challenges with the application of DSM
in Africa. One such challenge, usually considered as a global issue in
implementing DSM (Wadoux et al., 2020; Chen et al., 2022), is the
availability, quality and quantity of soil databases used to calibrate
and validate the DSM models. While new datasets are constantly being
gathered, they are usually held by a number of institutions and may not
be accessible to the public (Paterson et al., 2015). As a result, to date,
several DSM studies carried out in the continent use the same source
of calibration data, i.e., the freely available African Soil Profile (AfSP)
database (Leenaars et al., 2014) which comprises legacy soil data
for both the top and the subsoils. Nonetheless, the data are spatially
clustered because they are a compendium of smaller datasets gathered
from multiple sources (e.g., reconnaissance surveys, legacy soil maps,
soil surveys, project reports and published documents). Further, some
of these datasets may not reflect the current soil condition since they
were collected more than 40 years ago (Hengl et al., 2015), or were
measured from various laboratory methods, some of which may result
in large measurement errors (Odeh et al., 2012). Finally, the density of
the data available to calibrate and validate a DSM model is relatively
small compared to studies performed in other parts of the world, such
as Australia (e.g., Román Dobarco et al., 2022) or Europe (e.g., Mulder
et al., 2016). Ugbaje and Reuter (2013), for instance, only had 251
bulk density measurements to produce a digital map of the available
water capacity in Nigeria, resulting in approximately 1 measurement
per 3000 km2. All these, taken together, affect the quality of the digital
soil maps but also the ability of the practitioner to trust the maps and
use them in downstream applications.

In this paper, we review the current state of DSM in Africa, identify
challenges specific to implementing DSM in Africa, highlight some re-
search opportunities, and suggest improvements. It is the first time that
such an exhaustive review has been conducted for the whole continent
of Africa. The paper is divided into three sections. First, the current
state of DSM in Africa is reviewed, including when DSM is used as input
to a downstream application (e.g., for crop modelling). Second, we
discuss the identified challenges that pertain to the application of DSM
in Africa. Third, we highlight opportunities and a set of suggestions as
a means to progress towards a better accounting of the specificity of
DSM in the African continent.

2. Methodology

We reviewed the existing literature on DSM in Africa using two
approaches: a systematic search followed by a grey literature search
using a standard search engine. We describe the two approaches in the

following two sections.
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Fig. 1. (a) Annual number of DSM studies in Africa and (b) spatial distribution of studies per country. Studies at regional, continental and global scales were not considered in
(b).
2.1. Systematic search

The systematic search was made in two databases: Web of Science
(Core collection) and Scopus.

• In Web of Science (WoS), the search was conducted on January
30th, 2023 using the keywords ‘‘Digital soil mapping’’ OR ‘‘Soil
mapping’’ OR ‘‘Predictive soil modelling’’ OR ‘‘High resolution
mapping’’ in the title, abstract or keywords, for records that
contained the word ‘‘Africa’’ or the name of any African country.
We limited our search to (i) English because French is not among
the search languages of WoS and (ii) to an upper time interval
of 31st December 2022. The search led to 184 articles, which we
narrowed down to 90 articles after manually screening through
titles, keywords and abstracts and discarding records that had no
direct link with DSM or soil, or whose study case was outside
Africa. Only studies that conducted DSM at a local, national,
regional (i.e., a large area covering many countries in Africa),
continental, or global scale were retained.

• In Scopus, the search was conducted the same day, using the same
search procedure as in WoS, but this time returning records for
both English and French. We found 239 articles among which
three were in French. There were also 154 records that were
already included in the WoS search results. The articles focusing
on conventional soil and vegetation mapping were discarded.
After removing the duplicates between the two search engines, we
followed the same refinement procedure as for the records found
in WoS. This yielded 26 articles on either soil mapping or DSM in
Africa. We kept articles focusing on soil mapping because, from
reading the abstract, it was difficult to identify whether the work
was performed using conventional or digital soil mapping.

2.2. Grey literature search

Numerous DSM projects conducted in Africa may not be published
in indexed scientific journals. We therefore conducted a grey literature
search to complement the systematic search. The Advanced Search
of the Google Engine was used on January 31st, 2023. We limited
the search to African countries and to results that had the keywords
mentioned earlier in the title of web pages or documents only. Records
that were already included in the database resulting from the search in
WoS or Scopus were disregarded. An additional search in French using
3 
the term ‘‘Cartographie numérique des sols en Afrique’’ was made. The
search in English yielded 36 new records from which we found 20
documents (i.e., PhD theses, scientific articles, conference presentation
or posters) and 16 web links summarising DSM projects in Africa. We
found 10 web links in French on soil mapping for the search with the
keywords in French.

3. Current status of DSM in africa

The systematic and grey literature search yielded a total of 110
published articles, of which 83 were from WoS or Scopus, and 27 from
the grey literature search. In each article, we extracted the country and
the location of the study area, the purpose of the study, the spatial
extent of the study area, the sampling design, the sample size from
which we calculated the sampling density, as well as the modelling
and validation approaches. The Pearson’s correlation coefficient, 𝑟, was
computed where appropriate, to investigate variables relationship. A
summary of the information extracted from the articles can be found
in Table 1.

3.1. Number and spatial distribution of studies

Fig. 1 shows the annual number of DSM studies between 2005
and 2022 (Fig. 1a) and the spatial distribution of studies per country
(Fig. 1b) within Africa. The annual number of published DSM studies
consistently increased until 2022 (see Fig. 1a). Nonetheless, the number
of DSM studies varied greatly per country. South Africa was the most
active country with 20 studies, followed by Kenya with 10 studies,
and by Cameroon, Morocco and Tunisia with 8 studies each (Fig. 1b).
Moreover, the results revealed that DSM studies have been carried out
on approximately 49% of African countries (i.e., 26 countries out of
53). All the reviewed studies are summarised in Table 1.

Further classifying the number of publications by region (i.e., Cen-
tral Africa, East Africa, North Africa, Southern Africa and West Africa),
we found that each region had at least one DSM study. Southern Africa
had the largest number of studies with a total of 35 documented re-
search studies spanning 8 countries (i.e., Madagascar, Malawi, Mozam-
bique, Lesotho, Namibia, South Africa, Zambia and Zimbabwe), while
Central Africa, which consists of 6 countries, had the smallest num-
ber of studies, i.e., 8 documented research studies, all conducted in
Cameroon. Nearly 60% of the countries in Western Africa and 85% in

Central Africa had no DSM study as recorded in our literature search.
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Table 1
List of the 110 records obtained from the literature search with additional information obtained from the full-text read.

Country1 Spatial
extent2

Sampling
design

Soil
properties3

Data density
(unit/km2)

Number
of co-
variates

Predictive
models4

Grid
spacing
(m)

Map quality
indices5

Validation6 Purpose Reference

Africa Continent Stratified
random
sampling

SOC, pHwater ,
SB, sand,
RDR

0.00035 7 RF 250 R2, RMSE,
OA

k-fold CV Map
production

Vågen et al.
(2016)

Africa Continent Legacy soil
data

SOC, pHwater ,
sand, silt,
clay, BD,
CEC, total N,
exch. acidity,
Al content,
exch. bases
(Ca, K, Mg,
Na)

0.00092 Not pro-
vided

RF + RK,
MLR

250 RMSE, ME k-fold CV Map
production

Hengl et al.
(2015)

Africa Continent Legacy soil
data

pHwater , SOC,
total N, Total
SOC, clay,
silt, sand,
BD, coarse
fragments,
depth to
bedrock,
eCEC, extr.
P, K, Ca, Mg,
S, Na, Fe, Zn

0.00500 Not pro-
vided

RF, XGBoost,
NN, cubist,
NN
(ensemble
machine
learning)

30 LCCC, RMSE k-fold CV Map
production

Hengl et al.
(2021b)

Algeria Local Legacy soil
data

Soil groups 2.06438 12 BCT, RF,
SVML, SVMR,
NNET, MLP

30 OA, UA, PA,
kappa

k-fold CV Model
comparison

Assami and
Hamdi-Aissa
(2019)

Benin National Legacy soil
data

SOC stock,
SOC, total N,
pHwater , exch.
K, avail. P,
sum of bases,
CEC, and
base
saturation

0.01504 48 QRF, Cubist 100 RMSE, R2,
LCCC, MAE

Data splitting
with
repetition

Soil fertility
assessment

Hounkpatin
et al. (2022)

Burkina Faso Local Simple
random

Sand, silt,
clay, CEC,
SOC, total N

1.72759 53 MLR, RF,
SVM, SGB

5 RMSE,
sMAPE

Independent
data

Map
production

Forkuor et al.
(2017)

Burkina Faso Local Not provided SOC stock 0.45161 23 RF, MLR 90 RMSE, ME Data splitting Carbon stock
assessment

Hounkpatin
et al. (2018a)

Burkina Faso Local Not provided WRB Soil
groups

0.45161 32 RF Not pro-
vided

Kappa Data splitting Map
production

Hounkpatin
et al. (2018b)

Burundi Local Not provided SOC, clay 13.46667 26 (1)
geo-matching
using land
units
obtained by
spatial
overlay of
DEM-derived
landforms
and lithologic
units, (2) LR,
(3) GWR, (4)
GAM, (5)
BRT and (6)
ANN (7) RK

20 ME, MAE,
RMSE,
SRMSE or
NRMSE, Rp,
SDp

Data splitting Model
comparison

Sindayihe-
bura et al.
(2017)

Burundi,
Rwanda

National Not provided P, K, Ca, Mg,
S, Cu, Zn, B,
pHwater ,
Al+H, eCEC,
SOM

0.036 &
0.038

100 RF 250 R2, RMSE k-fold CV Map
production

Ruiperez Gon-
zalez et al.
(2015)

Cameroon Local Nested
hierarchical
sampling

pHwater , clay,
SOC

0.45584 12 RK supported
by restricted
maxi- mum
likelihood
(REML)
parameter
estimation

250 ME, RMSE,
R2, PICP

LOOCV Map
production

Takoutsing
et al. (2022)

(continued on next page)
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Table 1 (continued).
Cameroon Local Legacy soil

data
SOC stock
(temporal
1985 &
2017)

0.0486 &
0.0534

18 QRF Not pro-
vided

RMSE, ME,
R2

k-fold CV Carbon stock
assessment

Nguemezi
et al. (2021)

Cameroon Local Legacy soil
data

SOC, clay 0.01967 Not pro-
vided

Random
forest

250 R2, RMSE LOOCV Covariate
performance

Silatsa et al.
(2017)

Cameroon Local Nested
hierarchical
sampling

pHwater , clay,
SOC

0.45584 46 RF, RK 250 ME, R2,
RMSE

LOOCV Model
comparison

Takoutsing
and
Heuvelink
(2022)

Cameroon Local Legacy soil
data

pHwater , SOC,
sand, silt,
clay

0.00454;
0.005116

27 RF 250 R2, RMSE ,
LCCC

LOOCV Map
production

Silatsa et al.
(2017)

Cameroon National Legacy soil
data

pHwater , EC,
ESP

0.00197;
0.00061;
0.00228

Not pro-
vided

ML approach Not pro-
vided

Not provided Not provided Land
condition
assessment

Kome et al.
(2021)

Cameroon National Legacy soil
data

SOC stock 0.00301 12 RF, GBR,
RF+OK,
RF+IDW,
GBR+OK,
GBR+IDW

100 ME, MAE,
R2, RMSE ,
coefficient of
efficiency

k-fold CV Carbon stock
assessment

Silatsa et al.
(2020)

Cameroon Local Nested
hierarchical
sampling

SOC, N, clay 1.60000 0 OK Not pro-
vided

Not provided Not provided Map
production

Takoutsing
et al. (2017)

Egypt Local Legacy soil
data

SMUs Map
surveyed at
different
scale

10 MNLR 28.5 m
& 90 m

McFadden
pseudo
R-squares,
OA, kappa

Not provided Map
production

Abdel-Kader
(2011)

Egypt Local Not provided SMUs,
pHwater ,
Carbonate,
effective soil
depth,
gypsum, and
soil salinity

Not provided 1 OK 250 Not provided Not provided Land
capability
assessment

Ismail and
Yacoub
(2012)

Egypt Local Stratified
random
sampling

EC, clay and
SOM

0.31053 Not pro-
vided

MARS, PLSR 15 R2, RMSE,
SRMSE

Data splitting
& LOOCV

Covariate
performance

Nawar et al.
(2015)

Egypt Local Grid
sampling

Soil electrical
resistivity,
pHwater , EC,
BD

625.00000 0 OK Not pro-
vided

Not provided Not provided Land
condition
assessment

Swileam
et al. (2019)

Egypt Local Not provided SMUs Not provided 18 MNLR 28.5 &
90

McFadden
pseudo
R-squares;
OA, kappa,
UA, errors of
omission and
commission,
an overall
error
measure

Not provided Map
production

Abdel-Kader
(2013)

Egypt Local Not provided Soil
capability
index

0.01194 Not pro-
vided

RVFL, SCA,
AFO

Not pro-
vided

accuracy,
sensitivity,
specificity,
and precision

Not provided Land
capability
assessment

Alnaimy
et al. (2022)

Ethiopia Local Not provided soil groups,
drainage
class, pHwater ,
extr. Zn,
avail. P.

0.09676 139 RF 250 OA, ME,
RMSE,
SRMSE

Not provided Land
condition
assessment

Leenaars
et al. (2020)

Ethiopia Local Grid
sampling

Sand, silt,
clay, pHwater ,
exch. acidity,
exch. K,
exch. Ca,
exch. Mg,
Na, CEC,
SOC, total N,
Avail. P,
texture class

9.79912 0 OK 100 Not provided Not provided Land
condition
assessment

Iticha and
Takele
(2019)

(continued on next page)
5 
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Table 1 (continued).
Ethiopia Local Grid

sampling
pHwater , SOC,
total N, avail.
P, exch. Mg,
exch. K,
exch. Ca,
CEC, exch.
acidity

0.17726 0 OK 25 Not provided Not provided Land
condition
assessment

Sori et al.
(2021)

Ethiopia Local Grid
sampling

SMUs 13.87868 Not pro-
vided

OK 100 Not provided Not provided Land
condition
assessment

Iticha et al.
(2022)

Ethiopia National Legacy soil
data

WRB soil
groups

0.01320 27 RF 250 CM Data splitting Map
production

Ali et al.
(2022)

Ghana Local Unbiased
hybrid
stratification
algorithm or
Smart
sampling and
cLHS

WC 0.00111 19 RF, XGB
(ensemble
modelling)

100 RMSE, R2,
MAE, LCCC

k-fold CV Land
condition
assessment

Nketia et al.
(2022)

Ghana National Legacy soil
data

SOC stock 0.00312 10 RK 1000 ME , MAE,
R2, RMSE

LOOCV Carbon stock
assessment

Owusu et al.
(2020)

Kenya Local cLHS Mean weight
diameter of
soil
aggregates.

1.76471 15 Cubist + RK 30 R2, RMSE,
MSE, ME,

Data splitting
with
repetition

Land
condition
assessment

Kamamia
et al. (2021)

Kenya Local Stratified
random
sampling

SOC stock,
total N stock

0.33846 20 MLR, MLRK,
GWR, GWRK

30 ME, RMSE k-fold CV Carbon stock
assessment

Were et al.
(2016)

Kenya Local Simple
random

SOC, clay 0.01436 28 OK and
Step-wise
MLR

90 ME, RMSE,
SRMSE

Cluster CV Map
production

Mora-Vallejo
et al. (2008)

Kenya Local Legacy soil
data

SOC, clay,
silt, sand

0.04432 23 iPSM, SMLR,
OK

30 RMSE, R2,
LCCC, ME

Independent
data

Map
production

Minai et al.
(2021)

Kenya Local Not provided WRB soil
groups,
effective soil
depth, WC
and soil
drainage
class.

0.01429 16 K-means
clustering
and SOLIM

30 OA, Kappa,
ME, RMSE &
R2

Data splitting Land
condition
assessment

Ngunjiri
et al. (2019)

Kenya Local Stratified
random
sampling

SOC stock 0.33846 16 ANFIS-EG 30 ME, RMSE,
RPD

Data splitting Carbon stock
assessment

Were et al.
(2017)

Kenya Local Stratified
random
sampling

SOC stock 0.33846 16 SVR, ANN,
RF

30 RMSE, ME &
R2

Data splitting Carbon stock
assessment

Were et al.
(2015)

Kenya National Legacy soil
data

WRB soil
groups

0.00099 Not pro-
vided

GLMM + RK 250 Kappa Data splitting Map
production

Omuto
(2013)

Kenya Local cLHS soil
erodibility
factor

1.76471 17 Cubist + RK 30 R2 Data splitting Land
condition
assessment

Kamamia
et al. (2022)

Kenya Local Grid
sampling

total SOC, P,
total N, exch.
K and exch.
Na, Ca, Mg,
Mn, Zn, Cu,
Fe

340.71550 0 OK Not pro-
vided

RMSE LOOCV Land
condition
assessment

Mwendwa
et al. (2022)

Lesotho National Legacy soil
data

SOC, BD,
coarse
fragments,
SOC stock

0.00530 28 GLM, RF,
SVM, BGLM,
BCART,
CART,
Ranger, QRF,
QNR

250 ME, RMSE,
R2, NSE

Data splitting Carbon stock
assessment

Ramakhanna
et al. (2022)

Madagascar National Legacy soil
data

SOC stock 0.00203 10 RF 30 RMSE Data splitting Carbon stock
assessment

Ramife-
hiarivo et al.
(2017)

Malawi Local Simple
random

SOC, total N,
Avail. P,
exch. K, C:N
ratio, C:P
ratio, soil
structural
stability

4.46939 37 RF 10 RMSE, R2 k-fold CV Land
condition
assessment

Mponela
et al. (2020)

(continued on next page)
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Table 1 (continued).
Mali Local Legacy soil

data
Clay, sand,
silt, pHwater ,
total N and
SOC

Not provided 19 Cubist 1000 ME, RMSE, r,
R2

Independent
data

Model
extrapolation

Nenkam
et al. (2022)

Mali Local Stratified
random
sampling

clay, sand,
silt, pHwater ,
SOC, total N,
P, K

4.49438 0 OK Not pro-
vided

not provided Not provided Land
condition
assessment

Dembele
et al. (2016)

Morocco Local Systematic
sampling

SOM 0.72936 7 MLR, ANN 15 RMSE, MAE,
R2

Data splitting Model
comparison

Bouasria
et al. (2022)

Morocco Local Not provided SOM 0.84404 Not pro-
vided

DT, k-NN,
ANN

15 MAE, RMSE,
R2

Data splitting Model
comparison

Bouasria
et al. (2020)

Morocco Local Stratified
random
sampling

Soil
aggregate
stability
(mean weight
diameter,
slow wetting,
fast wetting,
and their
means)

0.07705 15 RF 15 R2, RMSE,
MAE

Data splitting Land
condition
assessment

Bouslihim
et al. (2021)

Morocco Local Systematic
sampling

SOM 0.19940 19 OK, RK,
MLR, RF,
QRF, GPR
and an
ensemble
model.

30 LCCC, MSE,
RMSE,
NRMSE,
RPIQ, MSEc,
RMSEc

Data splitting Sample ratio
performance

John et al.
(2022c)

Morocco Local Grid
sampling

P, K 0.0191; 0.04 20 RF 30 R2, RMSE,
MAE

Data splitting Sampling
design
comparison

John et al.
(2022a)

Morocco Local Grid
sampling

Soil salinity 4.45305 0 OK 100 RMSE, ME,
LCCC

LOOCV Land
condition
assessment

Dakak et al.
(2017)

Morocco Local Grid
sampling

pHwater , SOM,
K, P

0.22797 17 OK, KED 30 RMSE k-fold CV Covariate
performance

John et al.
(2022b)

Morocco Local Stratified
random
sampling

Soil salinity 0.05938 19 linear,
logarithmic,
and
polynomial
degree two
and four
regression
models

30 R2, RMSE,
NSE, Pbias

Not provided Land
condition
assessment

Rafik et al.
(2022)

Mozambique Local Stratified
random
sampling

SOC 4.20000 9 OK, KED,
linear
regression.

1000 RMSE,
SRMSE,
LOOCV

Independent
data

Model
extrapolation

Cambule
et al. (2013)

Mozambique Local cLHS Land
suitability
maps

2.15; 1.72 7 SoLIM 30 OA Data splitting Land
capability
assessment

Van Zijl
et al. (2014)

Mozambique Local Not provided WRB Soil
groups

1.10000 2 SoLIM Not pro-
vided

OA Independent
data

Map
production

Van Zijl
et al. (2012)

Mozambique Local Stratified
random
sampling

SOC stock 0.00576 5 OK and UK Not pro-
vided

RMSE Data splitting
& LOOCV

Carbon stock
assessment

Cambule
et al. (2014)

Namibia Local Directed
stratified
sampling
design

SOC stock 0.00204 222 OK, RK (only
used
SoilGrids
SOC stock as
covariates),
and RF + OK
(222 cov)

250 ME, MAE, R2 k-fold CV Carbon stock
assessment

Nijbroek
et al. (2018)

Namibia National Legacy soil
data

Clay 0.00044 109 RK, FRK
(filtered RK),
PPR
(projection
pursuit
regression),
FPPR
(filtered
PPR), RF,
FRF(filtered
RF).

250 ME, RMSE,
LCCC

k-fold CV Measurement
error impact

van der
Westhuizen
et al. (2022)

(continued on next page)
7 
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Table 1 (continued).
Nigeria National Not provided PAWC, sand,

silt, clay, BD,
SOC, pHwater ,
CEC

0.00121 35 Cubist + RK 100 ME, relative
error

k-fold CV Land
condition
assessment

Ugbaje and
Reuter
(2013)

Nigeria National Legacy soil
data

SOC, BD,
SOC stock

0.0007697,
0.00024032

23 RF, cubist,
BRT

1000 RMSE, R2
and LCCC

Data spliting
with
repetition

Carbon stock
assessment

Akpa et al.
(2016a)

Nigeria National Legacy soil
data

SOC, BD,
total N

0.000994 &
0.000272 &
0.001178

0 OK Not pro-
vided

Only
described the
spatial
variation of
the maps

Not provided Soil health
assessment

Boluwade
(2019)

Nigeria National Legacy soil
data

Clay, silt,
sand

0.00106 23 RF 1000 R2, ME ,
RMSE, LCCC

Data splitting Map
production

Akpa et al.
(2014)

Nigeria National Legacy soil
data

BD, eCEC 0.00028;
0.000679

18 RF 1000 MAE, RMSE,
R2, LCCC

Data splitting Map
production

Akpa et al.
(2016b)

Rwanda National Not provided total N, P, K,
soil nutrient
balance

0.01728 15 Ensemble
modelling
from 4 ML
algorthims
(RF, GBM,
xgbDART,
SVMRadial)

250 R2, MAEm,
RMSE

k-fold CV Land
condition
assessment

Uwiragiye
et al. (2022)

Rwanda National Not provided SOC, pHwater 0.03462 1 RK 250 R2, MAE Data splitting Map
production

Piikki et al.
(2017)

Senegal Local Cluster
random
sampling

SOC 0.08564 Not pro-
vided

Classification
Tree

30 Mean
prediction
error and
MSPE, RMSE,
R2

Independent
data

Map
production

Stoorvogel
et al. (2009)

Senegal Local Cluster
random
sampling

SOC, silt,
sand, clay,
pHwater , BD

0.04902 Not pro-
vided

Linear
regression

30 ME, MSE,
RMSE

Not provided Map
production

Kempen
(2005)

South Africa Local Smart
sampling and
cLHS

hydropedo-
logical soil
mapping
units

5.76387 Not pro-
vided

SoLIM 30 OA Independent
data

Map
production

Van Zijl and
Le Roux
(2014)

South Africa Local Expert
samples and
cLHS

Sand, silt,
clay, SOC,
gravel

51.85681 31 simple linear
models
(Ridge
regression,
linear
boosted
models,
quantile
regression)
and
non-linear
models
(SVM, RF,
SGB, cubist,
penalised
additive
spines)

10 RMSE, R2 LOOCV Map
production

Flynn et al.
(2019a)

South Africa Local Transects hydropedo-
logical soil
mapping
units

Not provided 14 MNLR 30 Total
evaluation
point
accuracy, UA,
PA, kappa

Data splitting Hydrology
modelling

Van Zijl
et al. (2020)

South Africa Local cLHS hydropedo-
logical soil
mapping
units

1.18333 Not pro-
vided

MNLR 30 OA, kappa Data splitting Hydrology
modelling

van Zijl et al.
(2019)

South Africa Local cLHS hydropedo-
logical soil
mapping
units

0.21739 4 SoLIM 30 OA, kappa Not provided Hydrology
modelling

Smit and van
Tol (2022)

South Africa Local cLHS WRB Soil
groups

0.72289 23 & 24 MNLR for
soil classes,
Cubist for
soil depth

30 Total
evaluation
point
accuracy, UA,
PA, kappa,
R2 for soil
depth

Data splitting Land
condition
assessment

Du Plessis
et al. (2020)

(continued on next page)
8 
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Table 1 (continued).
South Africa Local Simple

random
BD, WC 1378.26087 Not pro-

vided
Inverse
distance
weighting
with 3/12
neighbouring
points
(IDW3,
IDW12),
regular spline
with tension
and OK

Not pro-
vided

ME, MAE Data splitting Land
condition
assessment

Dlamini and
Chaplot
(2012)

South Africa Local Expert
samples and
cLHS

Soil depth
class

25.40984 14 MNLR
applied in
DSMART, RF,
OLR

10 Kappa, OA,
PA, UA

Independent
data

Land
condition
assessment

Flynn et al.
(2019b)

South Africa Local Legacy soil
data

TMUs 1.57729 52 RF, DSMART 30 CM, OA, RI Independent
data

Map
production

Flynn et al.
(2020)

South Africa National Legacy soil
data

SOC stock 0.00478 40 RF 30 R2, RMSE,
MAE

Data spliting
with
repetition

Carbon stock
assessment

Venter et al.
(2021)

South Africa Local Not provided Soil forms Not provided 7 SoLIM 20 Not provided Not provided Soil database
comparison

Van Zijl and
Botha (2016)

South Africa Local Nested
hierarchical
sampling

Soil
associations

1.72;1.21;0.69 Not pro-
vided

SoLIM 30 OA Independent
data

Map
production

Van Zijl
et al. (2013)

South Africa Local cLHS Erosion
sensitivity
index

1.17298 Not pro-
vided

MLR Not pro-
vided

ANOVA Data splitting Land
condition
assessment

Parwada and
van Tol
(2020)

South Africa Local Stratified
random
sampling

Soil
associations

6.1 & 11.8 27 k-nearest
neighbour,
nearest
shrunken
centroid, dis-
criminatory
analysis,
MNLR, linear
and radial
SVM,
decision
trees,
SGBoost, RF,
NN

30 Kappa & CM Not provided Model
comparison

Flynn et al.
(2019c)

South Africa Local Simple
random

SOC stock 0.12667 3 UK 100 MSE, RMSE Not provided Carbon stock
assessment

Wiese et al.
(2016)

South Africa Local Simple
random
sampling

SOC stock 3.32000 44 RF + RK 10 R2, RMSE,
SRMSE, ME

Data splitting Carbon stock
assessment

Wiese (2019)

South Africa Local Expert
samples and
cLHS

Soil
associations,
Texture class,
soil depth
class,
bleached
topsoil

25.40984 85 LDA, RR,
SVM, NB,
LogitBoost,
SGB, RF, CS

10 Kappa, PA,
UA

LOOCV Model
comparison

Flynn et al.
(2022a)

South Africa Local Not provided Land type Not provided 17 DSMART Not pro-
vided

R2, RMSE,
PBIAS, NSE,
KGE

Not provided Hydrology
modelling

Van Tol and
Van Zijl
(2022)

South Africa Local Stratified
random
sampling

Soc stock 0.97792 52 Cubist 30 RMSE Data splitting Carbon stock
assessment

Flynn et al.
(2022b)

South Africa Local cLHS +
Smart
sampling

hydropedo-
logical soil
mapping
units

2.82429 Not pro-
vided

SoLIM Not pro-
vided

CM Independent
data

Hydrology
modelling

van Zijl et al.
(2016)

Sub-Saharan
Africa

Regional Legacy soil
data

Root depth
and root-zone
PAWC

0.00056 Not pro-
vided

Linear
regression &
rules

1000 R2, ME,
MAE, RMSE,
RMdSE.

Not provided Land
condition
assessment

Leenaars
et al. (2018)

(continued on next page)
9 
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Table 1 (continued).
Sub-Saharan
Africa

Regional Legacy soil
data

pHwater , SOC,
clay

0.00070 31 linear
regression
without
interaction,
linear
regression
with
interaction,
regression
tree, RF,
ANN

250 RMSE, R2 Data splitting Map
production

Zhang (2013)

Sudan,
Lesotho

Local Legacy soil
data

EC, ESP,
pHwater

Not provided Not pro-
vided

linear
regression,
RF, SVM,
regression
trees, QRF,
RK, cubist

Not pro-
vided

RMSE, R2,
NSE, OA

Not provided Land
condition
assessment

Omuto et al.
(2022)

Tanzania Local Legacy soil
data

Soil
taxonomy
subgroups

Not provided 18 RF and J48 30 OA Not provided Map
production

Massawe
et al. (2018)

Tanzania Local Stratified
random
sampling

SMUs 0.00518 18 J48 and RF Not pro-
vided

𝑝-value
(t.test)

Independent
data

Map
production

Massawe
et al. (2016)

Tunisia National Legacy soil
data

SOC stock 0.00941 36 QRF 100 R2, RMSE,
ME

k-fold CV Carbon stock
assessment

Bahri et al.
(2022)

Tunisia Local Not provided Clay, sand,
Fe and CEC

0.38053 280
spectral
bands

Co-kriging 30 R2, RMSE LOOCV Map
production

Ciampalini
et al. (2012b)

Tunisia Local Simple
random
sampling

clay, sand,
silt, calcium
carbonate,
free iron,
CEC, SOC,
pHwater

0.43000 Not pro-
vided

PLSR 5 RMSE, R2,
RPD

Not provided Map
production

Gomez et al.
(2012)

Tunisia Local Legacy soil
data

Clay, silt,
sand, SOC,
pH,CEC

0.03154 20 RK, OK 30 95%
confidence
interval &
proportion of
true values

LOOCV Map
production

Ciampalini
et al. (2012a)

Tunisia Local Not provided Clay 0.60930 31 MLP-BP 30 R2, MAE,
RPD or
NRMSE,
RPIQ

Data splitting Covariate
performance

Gasmi et al.
(2022b)

Tunisia Local Random
sampling
from a
hyperspectral
image

Clay Not provided 16 QRF 5 MSE, MSE Sample ratio
performance

Lagacherie
et al. (2020)

Tunisia Local Random
sampling
from a
hyperspectral
image

Clay Not provided Not pro-
vided

QRF 5 ME, MSE,
SSMSE

Independent
data

Uncertainty
quantification

Lagacherie
et al. (2019)

Tunisia Local Not provided Clay 0.08733 6 MLR 30 R2, RMSE,
RPD, RPIQ

Data splitting Covariate
performance

Gasmi et al.
(2021)

Uganda Local Stratified
random
sampling

Landscape
classes

0.08717 47 BDT, RF 20 OA, Kappa Data splitting Map
production

Hansen et al.
(2009)

World Global Legacy soil
data

Topsoil
thickness,
soil depth,
SOC, clay,
sand

0.00001 7 Disaggrega-
tion of
Complex
Mapping
Units:
overlay the
complex soil
map and the
elevation to
create a
toposequence
from which
the simple
soil mapping
units is
derived.

1000 RMSE
difference

Independent
data

Map
production

Stoorvogel
et al. (2009)

(continued on next page)
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Table 1 (continued).
World Global Legacy soil

data
SOC, BD,
CEC, pHwater ,
clay, silt,
sand, coarse
fragments,
WRB soil
groups, depth
to bedrock

0.00029 150 MNLR, NN,
RF, xgboost
(ensemble
modelling)

250 R2 k-fold CV Map
production

Hengl et al.
(2017)

Zambia Local Stratified
random
sampling

SOC 0.14669 Not pro-
vided

OK Not pro-
vided

RMSE , ASE,
NRMSE

LOOCV Map
production

Chabala
et al. (2017)

Zambia Local Stratified
random
sampling

pHwater 0.18770 Not pro-
vided

OK Not pro-
vided

RMSE , ASE,
NRMSE, ME

LOOCV Map
production

Chabala
et al. (2014)

Zambia National Stratified
random
sampling

pHwater 0.00228 11 Linear mixed
model, RF +
OK

1000 ME, MSE,
median
square error

LOOCV Model
comparison

Makungwe
et al. (2021)

Zambia National Simple
random
sample

pH, SOC, P 0.00228 Not pro-
vided

OK, IDW Not pro-
vided

RMSE , ASE,
NRMSE

LOOCV Map
production

Chapoto
et al. (2016)

Zimbabwe Local Stratified
random
sampling

SOC Not provided Not pro-
vided

SMLR Not pro-
vided

ME, MAE,
RMSE,
RmedSE

LOOCV Map
production

Van Apel-
doorn et al.
(2014)

1 Refers to the study area for which a digital soil map was made.
2 Refers to the scale of the study area. Local:within the country; national:country scale; regional: covering multiple countries; continental and global.
3 SB: sum of exchangeable bases; pHwater : pH using water; Al: aluminium; Avail. P: available phosphorus; BD: bulk density; EC: electrical conductivity; exch. Ca: calcium; CEC:
cation exchange capacity; eCEC: efficient cation exchange capacity; Exch. K: exchangeable potassium; extr. Zn: extractable zinc; extr. P: extractable phosphorus; S: sulfure; B:
Boron; Fe: iron; exch. Mg: magnesium; Mn: manganese; N: nitrogen; Na: sodium; PAWC: plant available water content; SOC: soil organic carbon; SOM: soil organic matter; ESP:
exchangeable sodium percentage; RDR: root depth restriction; SMUs: soil mapping units; WC: soil moisture storage capacity; TMUs: terrain morphological units.
4 MNLR: Multinomial logistic regression; SoLIM: Soil land inference model; PLSR: Partial Least Square regression; BRT: Boosted regression tree; RF: random forest; SVM: support
vector machines; SVML: linear support vector machines; SVMR: radial-basis support vector machines; NNET: single hidden-layer neural networks; MLP: multilayer- perceptron neural
network; GLM: generalised linear model; BGLM: Boosting generalised linear model; CART: classification and regression tree; BCART: classification and regression tree with bagging;
Ranger: Ranger Random Forest; QRF: quantile regression forest; QNR: quantitative neural network; IDW3: Inverse distance weighting with 3 neighbouring points; IDW12: Inverse
distance weighting with 12 neighbouring points; TSF: regular spline with tension; iPSM: individual predictive soil mapping; ANN: artificial neural network; GWR: geographically
weighted regression; GWRK: geographically weighted regression-kriging; GAM: Generalised additive model; DSMART: disaggregating and harmonising of soil map units through
resampled classification trees; REML: restricted maximum likelihood; ANFIS-EG: adaptive neuro-fuzzy inference system; MARS: multivariate adaptive regression splines; MLP-BP:
Multilayer Perceptron with backpropagation learning algorithm; DT: decision trees; k-NN: k-Nearest Neighbours; OK: ordinary kriging, RK: regression kriging; GPR: Gaussian process
regression; GBM: gradient boosting; XGBDART/XGBoost: extreme Gradient Boosting; GLMM: generalised linear mixed-effects model; NSC: nearest shrunken centroid; LDA: linear
discriminatory analysis; RR: ridge regression; NB: Naïve Bayes classification; LogitBoost: Boosted logistics tree; Stochastic gradient boosting: SGB: Stochastic gradient boosting; C5:
C5.0 Decision tree; RVFL: traditional random vector functional link; SCA: sine cosine algorithm; AFO: aptenodytes forsteri optimisation algorithm; LBM: linear boosted model; QR:
quantile regression; PAS: penalised additive spines; LR: least squares linear regression.
5 RMSE: root mean square error; R2/MEC: coefficient of determination/model efficiency coefficient; LCCC: Lin concordance coefficient; MAE: mean absolute error; ME: mean
prediction error; MSE: mean square prediction error; PBias: percent bias; RMedSE: root median square error; McR2: McFadden pseudo R-squares; RPD: ratio of performance to
deviation; Rp: the mean rank; SDp: the standard deviation of ranks; CI: confidence interval; MSEc: mean residual variance; RMSEc: root mean residual variance; RPIQ: ratio of
performance to interquartile distance; SSMSE: mean square error skill score; r: correlation coefficient; MSPE: mean squared prediction error; ASE: average standard error; KGE:
Klinf-Gupta efficiency; OA: overall accuracy; UA: user’s accuracy; PA: producer’s accuracy; RI: relative index; CM: confusion matrix.
6 CV: cross-validation; LOOCV: leave-one-out CV.
3.2. Spatial extent

Fig. 2 presents the spatial extent over which the DSM studies in
our literature review were conducted, either local (0.06–450,000 km2),
national (26,000–1.22 × 106 km2), regional (1.8 × 107 km2 for Sub-
aharan Africa, the only regional study), continental (3 × 107 km2) and
lobal. Most of the DSM studies (74.5%, i.e., 79 studies) were carried
ut at a local extent.

.3. Soil properties, sampling designs and maximum soil depth

The quantitative and categorical soil variables mapped are shown in
ig. 3. More than two-third (72%) of the studies mapped quantitative
roperties, in which soil organic carbon (SOC) received the greatest
ttention in 31% of studies, followed by clay (27%) and pHwater (22%).

Phosphorus (P) was the most frequently mapped nutrient (12%), sec-
onded by total 𝑁 (11%). In Fig. 3, ‘‘Other properties’’ refers to soil
properties mapped by a single study. Example of such soil properties
are the root erosion sensitivity index, the C:N or C:P ratios, copper
and sulfur. On the other hand, fewer DSM studies (28%) mapped
categorical soil variables. Soil classes were the most common mapped
variable (15%), either through World Reference Base (WRB) taxonomic
units, soil associations or conceptual soil mapping units. Fewer studies
11 
Fig. 2. Relative proportion of studies based on the spatial extent at which DSM was
implemented, for local (0.06–450,000 km2), national (26,000–1.22 × 106 km2), regional
(1.8 × 107 km2), and continental (3 × 107 km2) extents.
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Fig. 3. Frequency of studies that mapped quantitative and categorical soil variables.
S

3

s

mapped soil depth classes (4.5%) and hydropedological soil types (5%).
Hydropedological soil types were mapped only in South Africa.

The sampling designs used to collect the soil samples are shown in
Fig. 4a. Approximately, 17% of studies did not provide information on
the sampling design. Out of those who did report the design, nearly
36% of studies used probability sampling with stratified random sam-
pling (≈16%) being the most common. Fig. 4a also shows that a larger
number of studies (≈46%) used non-probability sampling strategies,
with 29% of studies relying on legacy soil data. Legacy soil data was
classified as non-probability sampling design because the studies did
not explicitly provide information on the sampling design, suggesting
that legacy data are an assemblage of several datasets. Non-probability
sampling also included a smaller number of studies (≈17%) in which
cLHS, nested hierarchical sampling, directed stratified and transects
were used. In a nested hierarchical sampling, a site is subdivided into
a given number of clusters, and within each cluster a limited number
of geographical locations are selected for sampling (further details in
Vâgen et al., 2010), while in a directed stratified sampling design, an
existing soil map is used to increase the sampling density in areas with
high heterogeneity and decrease sampling density in areas which are
relatively homogeneous (Nijbroek et al., 2018).

Fig. 4b shows the maximum soil depth at which the soil properties
were mapped. Most of the studies mapped soil properties down to
30 cm (18%) and 20 cm (17%). Few studies (18%) focused on soil
depth between 31 cm and 100 cm, and only 16% mapped soil prop-
erties for soil depth below 100 cm with the majority mapping down
to 200 cm depth. Studies mapping categorical soil variables did not
usually provide the soil depth information and were classified as ‘‘Not
provided’’.

3.4. Sample size, sampling density

Fig. 5 shows scatter plots of the area of the study cases against the
sample size and the sampling density. The sample size varied between
100 and 100,000 units and strongly increased (𝑟 = 0.74) with the area
of the study case (Fig. 5a). The sampling density, conversely, strongly
decreased (𝑟 = −0.95) for larger areas (Fig. 5b). The average sample
size of studies carried out at a local extent was 300 units (Fig. 5a),
which increased to an average of 1470 units for studies at a national
extent and to an average of 62,290 units at a continental extent.

Fig. 5b shows that the sampling density ranges from 1378 units/km2

for a 0.23 km2 area reported in Dlamini and Chaplot (2012), through
a density of 0.0047 units/km2 at a national scale of 1,220,000 km2

area in a study reported in Venter et al. (2021) to a density of
 o

12 
Fig. 4. Bar plots with (a) the sampling designs used in the studies classified as
probability and non-probability designs, and (b) maximum soil depth at which the
soil properties were mapped.

0.00092 units/km2 for the study of Hengl et al. (2015) at a continental
scale. For studies at global scales, we found a density of 0.000012 km2.
ee Table 1 for more examples pertaining to different spatial extent.

.5. Factors of soil formation and environmental covariates

Fig. 6 shows the source and number of the covariates used in DSM
tudies in Africa, along with their categorisation into the 𝑠𝑐𝑜𝑟𝑝𝑎𝑛 factors
f soil formation and their frequency.
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Fig. 5. Scatter plots of (a) the relation between area of the study case and sample size, and (b) area and sampling density. The axis are in a logarithmic scale. The lines are
added for visualisation purposes and show a linear regression line fitted with ordinary least-squared.
Fig. 6. Bar plots and pi-charts showing the frequency (a) of the source of the covariates, (b) of the number of covariates used, (c) of the soil forming factors to which the
covariates were categorised and (d) of the number of soil forming factors. Note that, on the bar plots the frequency is given in numbers, while on the pi-charts it is given in
percentages.
Nearly 80% of studies provided the source of their covariates (See
Fig. 6a). The most common covariates came from remote-sensing im-
agery, for instance, the Shuttle Radar Topography Mission (SRTM) by
44% studies, Landsat (39%), and MODIS (20%), while fewer covariates
were sourced from legacy maps (11%, either soil or agricultural maps)
or from national databases (9%, e.g., national meteorological data). Co-
variates, such as the multi-spectral RapidEye bands or Light Detection
And Ranging (LiDAR), just to mention afew, were used by less than 5%
of the studies and were therefore categorised as ‘‘Other’’ in Fig. 6a. The
number of covariates used varied between 1 to above 85 (Fig. 6b) with
13 
26% of the studies using between 11 and 20 covariates, while 6% of
studies used either between 31 and 40 or above 85 covariates. No clear
relationship was found between the number of covariates and the area
of the study cases.

The number of covariates were grouped into scorpan factors and
Fig. 6d shows that most studies (31%) used 4 factors. The most com-
monly used scorpan factor was topography (67%, see Fig. 6c) with el-
evation, slope, topographical position index (TPI) and multi-resolution
valley bottom flatness (MRVBF) being the four most used topographical
covariates. The factor organism/vegetation (67%) was equally used.



A.M. Nenkam et al.

F
p
s
a
a
m
f
t
c

3

i
c

(
p
g
s
a
U
w
s
k
w
t
i
t
s

c
h
t
a
l
s
p
s
m

Geoderma 449 (2024) 117007 
Fig. 7. The different typologies of modelling approaches used in the DSM studies covering the African continent along with their frequency of use.
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ewer studies relied on the factors climate (36.4%), soil (34.5%) and
arent material (29%). Only 2% of studies used a direct estimate of the
patial location factor using, for example, the geographical coordinates
s covariates. No study explicitly used the age factor which reflects the
mount of rock weathering that has occurred over time. The environ-
ental covariates of 17% of the studies could not be classified into

actors of soil formation, either because none were used (e.g., studies
hat used OK as a predictive model), or no further information on the
ovariates was provided aside from the number used.

.6. Models and model optimisation

The modelling algorithms used to predict quantitative or categor-
cal variables were classified into 7 groups shown in Fig. 7. This
lassification was adapted from Chen et al. (2022).

Approximately half of the studies (46%) used machine-learning
ML) algorithms (without kriging). The most popular ML algorithms re-
orted were RF, cubist, XGBoost, ANN, SVM, BDT, and SGB. Linear re-
ression and landscape rules algorithms were classified as conventional
tatistics without kriging (31%). Examples are MLR, SoLIM, PLSR,
nd MNLR. Few studies (21%) used geostatistics models (e.g., OK,
K and co-kriging). Moreover, geostatistical modelling was combined
ith ML and conventional statistics models in 8% and 12% of the

tudy cases, respectively. This combination is referred to as regression
riging. A smaller number of studies (4%) used ensemble modelling in
hich the predictions of multiple algorithms are aggregated to make

he final predictions. In Fig. 7, ‘‘Other models’’ included deterministic
nterpolation such as inverse distance weighting or a combination of
he latter with ML. A relatively small part of studies produced maps of
oil classes using a disaggregation algorithm.

The models built were optimised through parameter tuning and
ovariates selection. Approximately, 16% of the studies optimised the
yper-parameters of the soil predictive models. Common optimisa-
ion approaches used were grid-search and sequential model-based
lgorithms. About 47% of the studies implemented a covariates se-
ection either as a pre-processing step or embedded in the modelling
tep through the soil-covariates relationship. The most common pre-
rocessing approach was the variation inflation factor, the step-wise
election using the Akaike Information Criterion on linear regression

odels, and the recursive feature elimination used on ML algorithms. i

14 
3.7. Validation approaches, validation statistics and uncertainty quantifi-
cation

The validation statistics used to evaluate the predicted soil maps
are shown in Fig. 8a. Quantitative soil maps were evaluated using
statistical indices such as RMSE (58%), which was usually associated
with an estimate of the deviation to the 1:1 line, such as the MEC or R2

(42%). Approximately one-third of the studies reported bias estimates
(e.g., ME). Indices, like RPIQ and 𝑟 were used by less than 5% of the
studies and were categorised as ‘‘Other indices’’. Common validation
statistics for categorical variables were overall accuracy (13%) and
kappa (12%), while fewer studies quantified the confusion matrix.

The validation statistics were estimated using various validation ap-
proaches (Fig. 8b). These included data splitting (34%), cross-validation
(i.e., k-fold (18%), leave-one-out (12%), cluster (2%)). About 12% of
the studies implemented a validation approach where a probability
sample was used to assess the quality of the map, referred to as
independent data validation. Approximately 21% of studies did not
report the validation approach used to evaluate the quality of their
predictions.

Fig. 8c shows the relationship between sampling density and RMSE
for studies mapping SOC (%). This was done to illustrate the relation-
ship between the magnitude of the mapping error and sampling density.
SOC was selected as it had received the most attention in the reviewed
DSM studies (see Fig. 3). Overall, the RMSE decreased as the sampling
density increased. However, the correlation was 𝑟 = 0.3, indicating a

eak relationship.
Quantifying the uncertainty associated with model predictions is

ritical in DSM. Only 11% of the reviewed studies computed the uncer-
ainty associated with their predicted maps, through the estimation of
rediction intervals. Further, few (i.e., nearly 4%) went a step further
o assess the quality of that estimation by computing the prediction
nterval coverage probability (PICP). PICP determines the proportion
f times the prediction interval actually contains the true value of the
arget variable through a cross-validation procedure.

.8. Map resolution

The resolution or grid spacing at which the digital soil maps were
roduced are shown in Fig. 9a. Nearly 19% of the studies provided no

nformation on the map resolution. The most common spatial resolution
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Fig. 8. Frequency (a) of validation indices found in the literature and (b) of validation approaches. The relationship between RMSE and sampling density for SOC in reported in
(c).
was 30 m, and this can be associated with the increased use of SRTM
and Landsat (30 m). The second most used resolution was 250 m, which
also relates to the resolution of MODIS (250 m), the 2nd most used
organism-related covariate. So, we can highlight that the covariates
are the most significant factor that controls the final prediction map
resolution. We further see a moderately strong and positive association
(𝑟 = 0.65) between the logarithm area of the study case and logarithm
resolution (see Fig. 9b).

3.9. Participating institutions

Fig. 10 shows the location of the institutions that performed DSM
studies within the continent of Africa. Approximately 37% of DSM
studies were conducted solely by institutions located within Africa.
However, there are regional disparities in these statistics. For example,
nearly 90% of DSM studies in South Africa were led by institutions
located within Africa, of which 80% were conducted solely by South
African institutions. Fewer studies (i.e., 10%) were conducted by insti-
tutions located outside Africa and 52% of DSM studies in Africa were
a collaborative result of various institutions located both within and
outside of Africa. We also evaluated the first authors and found that
76% originated from Africa.
15 
3.10. Objectives of the DSM studies

DSM studies were carried out for a wide range of purposes (Fig. 11).
The most popular objective was map production (≈35%) in which soil
property (e.g., OC, pH, etc.) maps were generated to understand the
spatial variation of these properties and increase the availability and
access to soil information. The second most common objective was soil
and land condition assessment by nearly 22% of the studies, including
but not limited to soil fertility assessment and water holding capacity
evaluation. Fewer studies (≈15%) generated maps to assess carbon
stock and the soil’s potential to sequester carbon while other studies
focused on model comparison (7%), covariate performance (≈5%) and
hydrology modelling (≈5%). Less than 2% of the studies generated
maps to assess land capability, model extrapolation and sample ratio
performance.

4. Challenges and opportunities

Based on our literature review, we identified challenges which we
describe below with an outline for research opportunities.
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Fig. 9. Bar and scatter plots with (a) the frequency of studies based for various map resolutions and (b) the study case area plotted against the map resolution. The blue line in
b) is added for visualisation purposes and shows a linear regression line fitted with ordinary least-squares.
Fig. 10. Origin of the participating institutions in studies on digital soil mapping in
frica.

.1. Why do many african countries have no intra-national or national
SM studies?

Our literature review has revealed that about 51% of (i.e., 27)
frican countries had no recorded DSM study. This covers approxi-
ately 17 M km2 of land area. It implies that to obtain soil information,

these countries need to source soil data from legacy digitised soil
maps (e.g., the digital soil map of the world, FAO-UNESCO, 1977;
Batjes, 2016; Nachtergaele et al., 2023) or global or continental-scale
digital soil maps (e.g., SoilGrids250 m or iSDA, Poggio et al., 2021;
Hengl et al., 2021b). The soil information from such maps, however, is
usually coarse with some debate on whether it accurately reflects local
soil geography (Buenemann et al., 2023). The information can also be
outdated, as is the case when using legacy digitised maps to understand
the pattern of dynamic properties. Four main factors may explain the

lack of published DSM studies in these African countries, these are:
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• The lack of data to build DSM models. DSM models are data-
driven, and their predictive ability is commensurate with the
quantity and spatial distribution of the available soil data (Wadoux
et al., 2020). Many African countries, however, still suffer from
limited access to soil data (e.g., low geographic coverage of the
observations) or from poor-quality data. Fig. 12 shows as an ex-
ample the spatial distribution of the observations available in the
African Soil Profile database (AfSP, Leenaars et al., 2014), which
is a compendium of soil observations compiled from disparate
sources and covering the continent. It reveals that many countries
have a low sampling density, resulting in little or no available
soil data. These include Guinea, the Democratic Republic of
Congo, Chad, Libya and, Liberia, among other countries. Without
a sufficient spatial coverage, performing DSM is a challenging task
that relies on soil model extrapolation (Nenkam et al., 2022) or
disaggregation of existing coarse-resolution maps (Flynn et al.,
2019b).

• The lack of capacity to perform digital soil mapping. Carrying
out a DSM study usually requires digital skills (e.g., for spatial
data management and programming), which national soil experts
do not always have. Capacity building on DSM was identified as
the primary action to improve soil data availability within the
continent by the African Soil Partnership launched a decade ago
under the umbrella of FAO’s Global Soil Partnership (GSP) (FAO,
2015). The GSP performed numerous trainings on DSM between
2014 and 2022 (a list of the countries that received the trainings
can be found in the Supplementary Material). Some of the train-
ings involved 30 countries among which Benin, Bostwana, Gabon,
Ghana, and Tanzania to mention a few. ISRIC and the University
of Sydney also performed trainings of African soil experts in
DSM. We found a correspondence between the countries involved,
the date of such trainings and the generation of DSM studies;
for instance, Cameroon, Morocco, Nigeria, Ethiopia, South Africa
and Zambia performed DSM studies shortly after the trainings.
Angola, conversely, to our knowledge did not undergo a training.
This might explain why it has not yet implemented a DSM study
despite having soil data on over 1000 soil profiles (Fig. 12),
which could be appropriate to generate baseline digital soil maps.
It appears from our non-exhaustive list of trainings conducted
in Africa and linked to publications, that capacity building is a
clear actionable step (see also Paterson et al., 2015). Besides, our
review indicated that only approximately one-third of the DSM
studies published were conducted solely by researchers whose
institutions were based in Africa. This further suggests a need to
organise more training courses for African experts, to reinforce
the capacity of local universities, to provide training in DSM or
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Fig. 11. Frequency of objectives of DSM studies found in this literature review.
to build DSM centres of excellence in Africa, which will in turn
support capacity building within the continent.

• It may not be an immediate necessity to generate digital soil
maps. Countries and national institutions, consequently, may in-
vest little financial efforts to update existing soil information and
soil research at large. We found in our review that DSM studies
in several countries were financed by either private industries or
through a collaboration with international institutions. In South
Africa, for example, 6 out of 10 DSM studies mentioned in van Zijl
et al. (2019) were solicited and financed by private industries,
while in Cameroon most of the DSM studies were financed by
international organisations and achieved through scientific col-
laborations with international institutions (e.g., Takoutsing et al.,
2017; Silatsa et al., 2017; Nguemezi et al., 2021). In Morocco,
the national initiative Fertimap (Moroccan Government, 2016),
partly funded by a private organisation, led to the production of
soil fertility maps covering agricultural areas in 2013. Another ex-
ample in Morocco is the project Al-Moutmir initiative, founded by
a private organisation, which is contributing new data gathering
and the provision of digital soil maps (e.g., Gasmi et al., 2022a;
Mamassi et al., 2022). We noted however very few national
initiatives supporting soil data collection or digital soil mapping
implementation in the long term. EthioSIS in Ethiopia (Hof, 2014;
Gebretsadik, 2014), for example, had a continuous production of
nutrient maps to support fertiliser recommendations from 2012
to 2019, while Rwanda recently launched the Rwanda Soil Infor-
mation Services (RwaSIS) (Centre for Agriculture and Biosciences
International, 2020), over 1000 soil profiles was added to the
Ghana soil information system (GhaSIS) (Leenaars et al., 2017),
and Zambia, Kenya, Nigerian and Kenya are currently planning
to create SIS. South Africa has, in parallel, outlined a growing
demand for soil information and identified actionable steps to
satisfy this demand (Paterson et al., 2015). One such action was
the requirement to survey hydropedological classes to support
environmental impact assessment (van Tol, 2020). We did not
find, regrettably, a mention of a priority concerning soil data col-
lection to support DSM by national governments in the reviewed
literature.

• Conventional mapping methods are preferred over DSM approa-
ches to generate the soil information. Soil scientists in national
17 
institutions who are responsible for the generation of conven-
tional soil maps may view DSM approaches as a threat; they may
fear that DSM may jeopardise their knowledge and skills and
that conventional polygon-based maps become obsolete. A similar
observation was made in Arrouays et al. (2020) with examples in
the Netherlands, France, Australia and the US, but this applies
equally to Africa.

4.2. Covariates

Creating local covariates could be beneficial to the DSM commu-
nity in Africa. Our review revealed that, there is almost no covariate
specific to a country within or to the continent of Africa. One ex-
ception is South Africa which created its own high resolution (2 to
5 m) topographical data, the Stellenbosch University Digital Elevation
Model (SUDEM, Van Niekerk, 2014) which was useful in numerous
DSM studies (e.g., van Zijl et al., 2016; Flynn et al., 2019a). Most of
the studies relied on global covariates databases, which usually ignored
local factors of soil formation (e.g., agricultural management and land
use often seldom measured) and consequently led to poor model perfor-
mance (e.g., Nijbroek et al., 2018; Stoorvogel et al., 2009). Such local
maps could be created by downscaling or statistical analysis of existing
national agricultural statistic maps, as done previously in other parts
of the world (e.g., Liu et al., 2020). Numerous studies reviewed have
commented on the need for more localised covariates (e.g., Nijbroek
et al., 2018; Kamamia et al., 2021). Therefore, more research efforts
are needed on how to derive high-resolution environmental variables
specific to either an individual country or the continent.

Gamma radiometry data provide much more detailed information
compared to the commonly used optical remote sensing data (Reinhardt
and Herrmann, 2019), however it was not used by any study in our
review. Gamma radiometry data commonly comprise soil signatures
on potassium (K), uranium (U) and thorium (Th) among other ele-
ments (Reinhardt and Herrmann, 2019). These signatures could be
sensed from at least 15 to 30 cm down the soil profile despite the pres-
ence of vegetation cover (McBratney et al., 2003). Gamma radiometry
has been used to accurately measure soil properties (e.g., Oliveira et al.,
1997) and classes (e.g., Schuler et al., 2011) and therefore could have
a great potential to improve model predictions. Several countries in
Africa have gamma radiometry data (Eberle and Paasche, 2012; Bokar
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Fig. 12. Spatial distribution of the observations available in the African Soil Profile database (AfSP).
et al., 2020), but they are usually privately owned and only used in
geophysics for the mining industries. In addition, they are spatially
clustered across the countries (see Bokar et al. (2020) for Mali). To
solve this issue, one could rely on the homosoils concept (Mallavan
et al., 2010; Nenkam et al., 2023) and use quantitative extrapolation to
increase the spatial coverage of the radiometry data as done by Malone
et al. (2016) for New South Wales in Australia. Governments or national
research institutes could collaborate with mining industries to build
a database of radiometry data for their countries and Africa at large,
and thus increase public access and usability. Overall, more effort is
required to create covariates specific to local conditions within the
continent so that various fit-for purpose maps can be created (Atkinson
et al., 2017).

4.3. Target soil properties

We found that all the soil properties suggested in the GlobalSoilMap
project specification (Arrouays et al., 2014) were mapped at least once
within the continent. However, some relevant soil characteristics did
not receive much attention as expected. These include rootable soil
depth or hydraulic properties like water content at field capacity (FC)
and permanent wilting point (PWP). These properties are crucial for soil
capacity assessments, soil management, hydrology and crop modelling.
The limited focus on mapping hydraulic properties could be attributed
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to the high cost and time-consuming nature of the measurement pro-
cess, whether in the lab or in the field (Minasny and Hartemink, 2011).
Indeed, less than 10% of the soil profiles in the AfSP database had
measurements on volumetric water content at FC and PWP (Leenaars
et al., 2018), which when shared among countries, cannot be enough to
build DSM models for map production. As an alternative, pedotransfer
functions (PTFs, McBratney et al., 2002) could be used as in Ugbaje and
Reuter (2013) for Nigeria and Leenaars et al. (2018) for Sub-Saharan
Africa. However, both studies used PTFs developed elsewhere, that is
in areas with probably completely different environmental conditions
as Nigeria or Sub-Saharan Africa, thus adding more uncertainty in the
predictions and consequently limiting their use for decision making.
Therefore, a cost effective way for mapping hydraulic properties could
be to invest on New data collection for the creation of PTFs that are
specific to African environmental conditions, whether at a national,
regional or continental scale.

We identified a unique soil type prediction, namely hydropedologi-
cal map units, which was mapped in South Africa only, but accounted
for nearly 5% of the DSM studies reviewed. Hydropedology, perhaps
better-termed pedohydrology, is an interconnected branch of soil sci-
ence and hydrology that studies the movement of water through the
soil (Lin, 2003). Hydropedology relies on the spatial and vertical dis-
tribution of soil characteristics, including the soil bio-chemical content
to explain hydrological processes at various scales (Van Zijl et al.,
2020). There has been increased interest in hydropdedology studies,
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across the world, for the past 20 years (Lin, 2003; D’Amore et al.,
2012; Al-Maktoumi et al., 2016; Pinto et al., 2017). However, to our
knowledge, mapping hydropdedology map units using a cost-effective
method like DSM has only been done in South Africa. See Van Zijl
and Le Roux (2014), Van Tol et al. (2015), Mamera and van Tol
(2018) and Julich et al. (2022) for examples and applications. Hydrope-
dology is critical for hydrology research and consequently for water
resource management. It is useful to enhance the ability of hydrology
models (Van Tol et al., 2015). It could also be useful to estimate
quantitative soil properties using PTFs (Pachepsky et al., 2006), or DSM
for wetland soils (Pennock et al., 2014). However, more research is
needed to evaluate the ability of hydropedological maps in mapping
other soil properties and nutrients, as well as soil functions such as crop
production, nutrient cycling and biodiversity conservation.

4.4. Challenges with using legacy soil data

The AfSP database (AfSP Leenaars et al., 2014) was the main source
of soil data in numerous DSM studies of our literature review. While
using legacy soil data was deemed a necessity, being the only available
comprehensive soil database (for both topsoil and subsoil) for the
continent, it triggered several operational challenges regarding their
use in DSM.

• Sampling date. Legacy datasets in Africa were particularly old. For
example, in the AfSiS dataset the soil sampling dates back to 1940
and most of the data come from sampling that was carried out
between 1980 and 2000 (see Leenaars et al., 2014). While this
may not affect DSM for stable and slowly changing soil properties
such as texture and depth, it would become critical for dynamic
properties that could change rapidly following changes in land
use and climate. This is the case, for example, for OC, pH, and
micro-nutrients important for agro-environmental management in
the African context of agricultural expansion. While most studies
disregarded this challenge, DSM methodologies are also lacking
to better account for the date which soils were sampled. More
research on the influence of the sampling date on the prediction
outcome could potentially be useful. Although some solutions
have been found, one might provide weights to the soil data
depending on their obsolescence to answer the problem at hand
(e.g., mapping of carbon). Another obvious solution is to use
recent data only (which are sometimes fragmented) and to engage
in new data collection.

• Spatial clustering. The soil datasets from legacy surveys were usu-
ally spatially clustered (Leenaars et al., 2014; Akpa et al., 2016a;
Nenkam et al., 2022). This is a common issue in many parts of the
world where datasets are obtained from the gathering of surveys
designed initially for various purposes (e.g., agricultural experi-
ments). Clustering of soil datasets in the geographical space might
lead to unrealistic estimates of the soil properties or classes over
an area because of the over-representation of specific areas in the
geographic or feature space within the model. Clustering might
also provide biased estimates of the map accuracy. Declustering
techniques can be applied at the modelling or validation stage,
by giving more weights to samples in sparsely sampled areas. A
recent example application is Nenkam et al. (2022). Alternatively,
one may consider collecting data so they cover geographical or
feature spaces that are unseen in the existing legacy database.

• Positional errors. DSM studies take as input georeferenced soil
data, but the locations themselves may have a substantial error.
This is especially true for samples collected before the advent
of the GPS available to civilians in the 2000s. Leenaars et al.
(2014) have reported that 90% of the compiled soil profiles in
AfSP are georeferenced with an accuracy between 1 and 700 m.
This issue is also common in global soil databases. Few studies
investigated this aspect of the measurement error elsewhere. One
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of the few is Samsonova et al. (2018), in which they concluded
that positional error had a major effect on model predictions.
Additional research in this direction is required to find ways
of estimating and accounting for this error in subsequent DSM
studies.

• Measurement errors. Measurement refers to errors occurring during
field sampling, sample handling and management and during the
laboratory estimate (van Leeuwen et al., 2022). Using legacy data
measurement error also refers to errors arising because of labora-
tory methods and sampling protocols that vary over time and by
regional and national surveys. While some of these discrepancies
are accounted for in large-scale compilation of datasets (for ex-
ample, in Leenaars et al., 2014), the quantification of this error is
usually beyond the researcher’s control because one would need
(i) information on quality control standards for each observation
and (ii) replicates of the measurement in different laboratories.
This might explain why no study in our literature review did
account for measurement error. This is also a frequent challenge
in DSM studies, with few examples in the literature only (e.g.,
Takoutsing et al., 2022). We need to develop methodologies to
quantify this error and propagate it in subsequent modelling
steps.

• No private data.The database does not include privately owned
data that were not made publicly available. In Mali for example,
the independent data used in Nenkam et al. (2022) to validate the
soil maps were collected from disparate sources and not included
in the AfSP database. While in Morocco, though Fig. 12 shows
sparsely distributed data, there has recently been data collection
under the Fertimap and Al-Moutmir initiatives but none are made
publicly available. Such data may complement and reduce the
spatial clustered nature of existing legacy soil database at a
national level, and consequently enhance DSM related research
for the provision of accurate soil information. There is need to
develop win-win collaboration strategies between national gov-
ernments and private institutions for the public release of soil
data.

4.5. On the use of legacy soil maps

Users also recognise the value of legacy soil maps to provide infor-
mation that is readily understandable by farmers and land planners.
In areas of deficit in soil information and when digital soil maps are
not readily available, it is usual to base decisions from the information
obtained from legacy polygon-based conventional soil maps. It comes
with challenges, which are described thoroughly in Van Ranst et al.
(2010). There are, for example, inconsistencies between taxonomies
used over time or between different localities. This poses problems
for small-scale soil inventories and the transfer of information and
knowledge between places, but probably not within the same country.
Fig. 13 shows some of the small and large-scale maps generated for Mali
during colonial times, using two or more taxonomic systems. Another
challenge is the coverage at which legacy maps were generated. One
example is Mali where only 50% of the country is covered by a
map at the scale of 1:500,000 - ±100,000 (Van Ranst et al., 2010).
Another example is Morocco, where legacy soil maps generated during
the last century cover only 30% of the country (Badraoui and Stitou,
2001). In a recent study, Mukumbuta et al. (2022) attempted to access
legacy soil survey information in Zambia, and found that only 22%
of memoir and map sheets of previous surveys realised in colonial
and post-colonial times could be traced. In contrast, several countries,
including Benin, Burkina Faso, Rwanda, and Swaziland Van Ranst et al.
(2010), Togo, Angola, Mozambique and Central African Republic, have
completed detailed and nationally comprehensive soil mapping efforts
during the same period. Most of the legacy soil maps are available in
digital scanned format in the ISRIC Data Hub. In Rwanda, the legacy



A.M. Nenkam et al.

m
p
e
s
2
e
a

i
i
d
A
m
e
s

Geoderma 449 (2024) 117007 
Fig. 13. Some legacy soil maps at small and large geographic parts of Mali. The maps were sourced from Panagos et al. (2011) and digitised as part of this research.
aps were used at a broader scale, for settlement planning, disaster-
reparedness planning, and agricultural input application (Van Ranst
t al., 2010). However, using them for decision-making at a farm
cale is not recommended due to high uncertainty (Buenemann et al.,
023). Nonetheless, pursuing the data rescue of legacy soil maps, as
mphasised by Arrouays et al. (2017), and making them accessible in
digital format remains critical.

Legacy soil maps in many areas served as unique and key soil
nformation for DSM. The map may be used to design new soil surveys
n DSM studies, for example using the soil map units as strata to con-
uct a stratified random sampling design (e.g., Massawe et al., 2016).
nother use of legacy maps is by adding them as covariates in the
odel, as was regularly identified in our review (see Fig. 6d). Leenaars

t al. (2020) concluded that integrating legacy soil maps as covariates
ignificantly enhanced the predictive ability of the empirical models
20 
when producing a drainage soil class map in highlands in Ethiopia. In
a nutshell, some countries with good legacy soil maps can benefit from
this information in the creation of digital soil maps. Another approach
relies on using the soil map as such to support the creation of spatially
exhaustive digital soil information. This was done in Mukumbuta et al.
(2021), in which it compared small-scale soil maps of Zambia against
soil property measurements. Their results revealed that the maps could
explain between 40% to 50% of the variation of bulk density and sand.
Another approach consists in disaggregating the legacy maps using
environmental covariates. In this review, disaggregation of legacy soil
maps using techniques such as SoLIM (Zhu, 1997) or DSMART (Odgers
et al., 2014) were intensively carried in South Africa (e.g., Van Zijl
et al., 2013; Flynn et al., 2019b).
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4.6. Purpose and potentials of the DSM the studies

In our literature review, nearly half of the studies focused on pre-
diction of soil properties and classes or methodology development. This
means that the other half of the studies had a purpose other than map
production, such as digital soil assessment and mapping of functional
properties. Some examples include Hounkpatin et al. (2022), which
produced maps of several soil attributes (e.g., SOC stock, CEC, total N)
and then used them to create a soil fertility map for the country of Benin
in West Africa, or Leenaars et al. (2020) who predicted soil drainage
class among other soil properties in several districts in Ethiopia to
evaluate water infiltration and movement in the soil. Du Plessis et al.
(2020) produced soil association maps to assess potential gully erosion
areas and suggesting soil management strategies to prevent erosion in
a catchment in Eastern Cape, South Africa. Our review suggests that
many studies have made used of DSM tools to provide soil information
that better matches the end-user’s demands. This was recognised by
many (Adhikari and Hartemink, 2016; Bouma et al., 2019; Evange-
lista et al., 2023) as an objective to better integrate soil science and
DSM in interdisciplinary studies on soil security, ecosystem services
assessment and sustainable development. This is also an opportunity
to map variables that are less common in DSM studies, such as com-
paction and electrical conductivity, which are relevant to end users but
require models that do more justice to the underlying processes and
landscape evolution. Moving from DSM to soil assessment, however,
requires proper quantification of the uncertainty. End users, indeed,
need to be informed on the limitation of the prediction with uncertainty
estimates. Our review has shown, however, that DSM studies are still
lagging behind in terms of uncertainty quantification (i.e., 11% of
studies reported an estimate of uncertainty). Therefore, the difficulty
in measuring uncertainty and presenting it at a scale that is relevant
to end-users continues to be a challenge. This could be achieved using
uncertainty aggregation techniques (e.g., Courteille et al., 2024).

DSM approaches have existed for more than two decades and nu-
merous DSM studies have looked at how to provide accurate predictions
with acceptable uncertainty, as suggested by Finke (2012). Now, with
the exponential increase in demand for soil information, it is time to
focus more on delivering DSM products that are useful, usable and
capable of appropriately informing decision-making by various stake-
holders, such as precision agriculture (e.g., whether fertiliser should be
applied on a field or not, or whether lime amendments is required on
field with acidic soils). Note that agriculture contributes to over 30%
to 60% of several African countries GDP. Information from DSM could
also be used in other sectors of the national economy to make critical
decisions. For example, lender and insurance institutions could use
information from DSM products to preliminary access the viability and
risk of a farming enterprise before committing to financing. Therefore,
ready to use digital soil information would help tackle global environ-
mental issues such as food, water and energy security, climate change
mitigation, maintenance of ecosystem services, land use allocation and
soil security.

Beyond the move from DSM to soil assessment, there is also room
to consider DSM as input to other models whose outputs are the main
interest. Integrating DSM products with crop modelling, for example, to
assess crop production in the face of climate change and food security
could be a powerful tool. This is in line with the broader soil science
and agronomy literature (see, for example, Lagacherie et al., 2022;
Guilpart et al., 2017; Claessens et al., 2015). Crop models are location-
specific mechanistic models that rely on several input data, soil data
being one of them, to estimate crop growth and development and thus
carry out agricultural and climate change risk assessments (Keating
et al., 2003). There is a promising line for future research in the
integration of high-resolution DSM with crop modelling. This could
solve the data paucity at a farm scale to provide spatially exhaustive
estimates of the soil input parameters compared to using the measured

soil observations. This would also give the opportunity to quantify the
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uncertainty of the crop model prediction using the quantified uncer-
tainty of the DSM product. This approach was to date conducted at a
global scale using gridded soil data at a coarse resolution (e.g., 10 km,
Rosenzweig et al., 2014; Han et al., 2019). The challenge is that, these
crop maps are inefficient in the African context, where the agricultural
production still rely on smallholder systems with small farm size and
high soil spatial variability.

4.7. Country’s development

DSM products could contribute to African country’s economic gr-
owth. DSM aims at providing soil related technology and data that are
faster, cheaper and continuously updated (McBratney et al., 2003) to
enlighten the decision-making process. Soil is a key natural capital for
any nation, particularly in African countries which covers nearly 60%
of the world’s available arable land (Africa Union, 2015). DSM, thus,
remains critical for soil’s resource inventory and quantification at a
spatial scale. DSM could produce detailed soil maps at various spatial
scales which could positively impact the GDP of a country. Hartemink
and McBratney (2008) showed that investing in soil related research
may have a positive relationship with the GDP of a country. Their
results suggested that the national coverage of detailed soil maps in-
creased with increasing GDP in developed countries, while the national
coverage of coarse soil maps decreased with increasing GDP for most
developing countries, among which African countries. This suggests
that implementing DSM studies could provide valuable and actionable
soil information to various stakeholders, thereby positively impacting
the development of several African countries. However, it would likely
require significant investments. This is also suggested by Cook et al.
(2008) who concluded that a major effort to promote DSM application
will likely contribute to Africa’s development. For Cook et al. (2008),
DSM studies need to pass tests on significance, novelty, actionability and
delivery for them to contribute to Africa’s development. Our review
revealed, DSM applications in Africa are yet to satisfy these milestones.

4.8. National soil information systems & policy making

Around the world, countries are putting together efforts to de-
velop soil information systems (SISs) as a support system tool for
policy. Australia, for example, had launched in 2021 a National Soil
Strategy (Australian Government, 2021). The policy describes how
the country manage and improve soil health in the coming 20 years.
This led to the creation of the Australian National Soil Information
System (ANSIS, Australian Government, 2023), an initiative to provide
consistent and accessible soil data and information standards. Simi-
lar national and continental policy initiatives are taking place in the
European Union and the United States.

In Africa, a few countries are developing national soil information
systems (NSISs). Ethiopia has launched the Ethiopian soil informa-
tion system (EthioSIS, Ethiopian Agricultural Transformation Agency,
2017) in 2017 to tackle various threats to soil, in particular soil
erosion and land degradation, which significantly affected crop produc-
tivity and the country’s food security. EthioSIS focused on generating
digital soil fertility maps for agricultural areas at the levels of the
woredas (i.e., administrative unit) using DSM techniques. From these
maps, fertiliser recommendations were calculated and shared with
various stakeholders of the agricultural production chain to optimise
fertiliser production, supply, and usage (Wedajo Abdi, 2019; Hord-
ofa, 2020). Regrettably, the project was discontinued in 2022 after
10 years (Ethiopian Government, 2022) and though EthioSIS’s system
would be enhanced with legacy soil data (See Table 1 for further
information), there is to date no information on how it would be
updated with new data in the upcoming future. Long term NSIS are
needed for the sustainable management of soils and the mitigation of
soil degradation and erosion. This importance is usually called upon by

national institutions with no decision-making power (e.g., Universities
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in South Africa (Paterson et al., 2015)) or by international institu-
tions (e.g., FAO’s global soil partnership (Montanarella, 2015)). In most
African countries, however, the general tendency has been a morose
consideration of further investments for the production of NSISs using
national budgets. One reason might be that several countries do not
sufficiently recognise the importance of soils (Bouma et al., 2012) on
the national economy and on the population welfare. In addition, in
several African countries, there is not a real political vision related
to soils. Concrete actions in terms of accurate soil information to
understand the soil condition, at a national level, are currently either
non-existent or very old.

In countries where a national database exists, the production of
an up-to-date national soil information system may be constrained by
(i) the quality of the data, for instance the Cameroon soil database
Camsodat01 (Silatsa et al., 2017) consists mainly of legacy soil data
with issues of reliability (see Section 4.4 for further considerations on
this aspect) and (ii) data availability and access. The Fertimap database
in Morocco, for instance, is not made publicly accessible. Another
constraint is (iii) infrastructure for laboratory analysis and technical
capabilities. Despite the growing need for soil information, developing
a sustainable strategy to set up an NSIS in several African coun-
tries will require tackling the aforementioned constraints. An action
which is urgently needed to enlighten policies on soil security, agricul-
tural production, land degradation, water security and environmental
protection, just to mention a few.

4.9. Capacity building on DSM

There is a need for a new generation of soil scientists as formulated
by Hartemink and McBratney (2008). In Africa, this would enable to
tackle challenges specific to the African continent. Such challenges are
the inclusion of local knowledge and realities in the DSM workflow
to improve the actionability and delivery of DSM products. Future
capacity building needs to embrace indigenous and scientific knowl-
edge (Snapp, 2022), which can be achieved with transdisciplinary
knowledge. The transdisciplinary approach is essential to address the
complexity of soils in the land system and will be crucial in the
future to allow soil science to participate in studies on sustainable
development (Hou et al., 2020). It is also relevant when including
DSM in the soil sciences curricula of higher education institutions in
Africa. One approach to support this is to allow students from other
fields of research such as mathematics, data science, or computer
science to integrate a major in soil science. Breaking such disciplinary
barriers could significantly contribute to the advancement of DSM in
Africa and boost local DSM capacity. A good balance, however, is also
needed for DSM skills to coexist with knowledge in conventional soil
surveys and avoid the risk stressed by Biggs et al. (2022), highlighting
that DSM methods might lead to a perception that soil scientists are
not needed and ‘‘modelling expert’’ are sufficient to make digital soil
maps. Finally, we stress the importance of ongoing collaborations with
institutions within and outside of Africa. Efforts should be made to
enhance and improve the existing ones as highlighted by Minasny et al.
(2020) who emphasised the importance of global soil science research
collaboration. It could take the form of more collaborations between de-
veloped and less-developed countries. However international research
should avoid helicopter-type research such as generating digital soil
maps of Africa from a wealthy institution without empowering soil
scientists from countries in Africa with DSM techniques. Table 1 in
the Supplementary Material outlines training initiatives that various
institutions have conducted for over a decade to address this challenge.

4.10. Suggestions for the way forward

DSM in Africa currently relies heavily on legacy soil data. Col-
lection for new soil data is limited due to the high cost involved.
There has been top-down initiatives such as the Africa Soil Information
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Service (AfSIS, Vågen et al., 2010) which collected new data at 60 sites
across the continent. While bottom-up approaches are used to update
the AfSP database through the GlobalSoilMap initiative (Arrouays et al.,
2017), the new data are limited only to the topsoil (i.e., within the
0–30 cm depth layer), making it challenging to support land use
allocation, soil fertility management and, soil health monitoring. There
are also continental maps created using these new data coupled with
legacy soil data (Hengl et al., 2017a, 2021b). However such maps could
only provide a baseline status of the soil due to the nature of the data
used (see Section 4.4). A recent initiative, namely Soils4Africa (Euro-
pean Commission, 2020), aims at collecting soil data on approximately
20,000 profiles distributed across the continent. However, the data
would be collected only down to 50 cm soil depth. Such data are appro-
priate to provide information on the surface condition of the soils, but
knowing the condition of deeper soils is equally essential for long-term
assessment of soil health, crop productivity, and land suitability. The
limitation to sampling only topsoil is often due to budget constraints,
as deeper soil sampling requires more resources in terms of labour,
equipment, and time, making it more expensive. However, subsoil data
remains critical (de Oliveira and Bell, 2022) and if carefully planned by
individual countries, it is possible to ensure the collection of soil data
at deeper layers over a longer period (for example, within 20 years),
consequently providing sustainable and locally relevant soil informa-
tion. It is important to emphasise that, both AfSIS and Soils4Africa
are useful initiatives funded and executed by international institutions
outside of Africa, which means they only sample based on the project’s
financial capacity to achieve their objectives. Therefore, to sustainably
create accurate soil information that is reliable, useful, and usable by
various stakeholders within the continent, we suggest that initiatives
for soil data collection and the creation of digital soil maps originate
from within the continent and thus compliment external efforts while
ensuring that projects are tailored to local needs, national needs and
finally continental needs. An example of how this could occur is from
South Africa, where hydropedological assessments are now required
as part of the environmental impact assessment process for water
security (van Tol, 2020), and this generates new soil data which could
be incorporated into the creation of a national digital soil map.

We thus suggest the following to enhance the production of digital
soil maps and move a step further with digital soil assessment.

• Promote the importance of soils. This consists of generating value-
added propositions for the soil information to political institutions
to emphasise its positive effects such as food security, reversing of
soil degradation, environmental sustainability and consequently
political stability and national economic development.

• Create long-term soil related policies. This entails national ser-
vices and stakeholders to engage in lobbying activities to drive
the creation of policies that favour the creation of new monitoring
surveys, and support the creation of NSISs.

• Collect soil samples at deeper depths (e.g., including subsoil up
to 2 m). Sample across the whole soil profile at the national
level using approaches adapted to the circumstance of the country
or regions. It requires approaches that are both environmental
friendly and financially efficient.

• Capacity building of soil scientists at the national level on the
whole process of DSM to prepare the next generation of digital
soil mappers.

• More engagement among stakeholders currently championing
DSM and soil information in the continent. There is a need for
African soil scientists to cooperate, this can happen when there
are more opportunities for networking at regional and continental
level so that the scientists understand each other’s work culture,
develop mutual trust and have the confidence to initiate and

implement joint work.
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• Go beyond providing DSM products and support digital soil and
land assessments (e.g., crop area allocation, fertiliser applica-
tion, land use management, erosion control and mitigation, soil
health management strategies, carbon sequestration, soil micro-
bial maintenance, etc.) that can lead to actionable decisions and
therefore contribute to the countries development.

. Conclusion

The literature review on DSM presented in this article is the first of
ts kind for the continent of Africa. The following presents a summary
f the main conclusions.

• Digital soil mapping has received increasing attention within the
continent of Africa for the last two decades.

• Nearly 46% of the countries within the continent had at least
one DSM study. Nearly half of the DSM studies focused on soil
property or class map production or methodology development.
The other half performed studies in which map production was
not the main interest, but instead focused on quantifying soil
functions and digital soil assessment.

• Several soil variables were mapped. The most mapped variable
was soil organic carbon (SOC), whereas soil hydraulic variables
were seldom reported.

• Most studies used machine learning algorithms and produced
digital soil maps for the topsoil up to 30 cm depth. The majority
of studies relied on legacy soil data as the source of the model
calibration data and calculated validation statistics using exist-
ing datasets but without collecting a post-mapping probability
sample. In addition, the area of the study cases was strongly
negatively correlated with the sample density. Only a few studies
estimated the prediction uncertainty.

• Due to the quality of the legacy soil data, most studies called
for new data collection, which is often limited due to financial
constraints. Initiatives for soil data collection and the creation
of digital soil maps should be initiated and led from within the
continent to support the long-term maintenance and development
of monitoring networks and information systems.

• The covariates used in most studies were usually generated at a
global scale, thus may most likely present bias at reflecting the
local patterns of the landscape. Therefore, more research efforts
are required on how to derive high-resolution environmental
variables specific to either an individual country or the continent.

• Lack of digital skills was identified as one of the primary reasons,
the other half of the countries in Africa had no DSM study. The
creation of centres of excellence, in Africa, to train soil scientists
with state-of-the-art DSM approaches is highly recommended to
ensure the sustainability of DSM within the continent.

• Fewer studies focused on digital soil assessment to enhance
decision-making and thus contribute to countries’ development.
The limited use of DSM for actionable decision-making may
explain the nearly Nil investments in soil-related research. There-
fore, digital soil mappers should generate value-added proposi-
tions to political institutions and engage in lobbying activities to
drive the creation of soil information.

• Designing soil monitoring networks with the support of decision-
makers, both locally and nationally, could support the generation
of DSM products and their use in the long term for soil health,
land suitability, and crop productivity risk assessment.

• There is a need to rebuild and maintain a data environment that is
conducive for novel soil-related research and that aims at tackling

environmental issues faced in Africa.
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