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A B S T R A C T   

Artificial neural network (ANN) models have been successfully used in infrared spectroscopy research for the 
prediction of soil properties. They often show better performance than conventional methods such as partial least 
squares regression (PLSR). In this paper we develop and evaluate a multivariate extension of ANN for predicting 
correlated soil properties: total carbon (C), total nitrogen (N), clay, silt, and sand contents, using visible near- 
infrared (vis-NIR), mid-infrared (MIR) or combined spectra (vis-NIR + MIR). We hypothesize that accounting 
for the correlation through joint modelling of soil properties with a single model can eliminate “pedological 
chimera”: unrealistic values that may arise when properties are predicted independently such as when calcu-
lating ratio or soil texture values. We tested two types of ANN models, a univariate (ANN-UV) and a multivariate 
model (ANN-MV), using a dataset of 228 soil samples collected from Murehwa district in Zimbabwe at two soil 
depth intervals (0–20 and 20–40 cm). The models were compared with results from a univariate PLSR (PLSR-UV) 
model. We found that the multivariate ANN model was better at conserving the observed correlations between 
properties and consequently gave realistic soil C:N and C:Clay ratios, but that there was no improvement in 
prediction accuracy over using a univariate model (ANN or PLSR). The use of combined spectra (vis-NIR + MIR) 
did not make any significant improvements in prediction accuracy of the multivariate ANN model compared to 
using the vis-NIR or MIR only. We conclude that the multivariate ANN model is better suited for the prediction of 
multiple correlated soil properties and that it is flexible and can account for compositional constrains. The 
multivariate ANN model helps to keep realistic ratio values – with strong implications for assessment studies that 
make use of such predicted soil values.   

1. Introduction 

Soils play a vital role in nourishing life on earth, supporting food 
production and essential support services that are crucial for human 
well-being (Lal, 2016). A soil is characterized by its physical, biological, 
and chemical properties, such as pH, nutrients, and soil organic carbon 
(SOC) contents. Soils and soil properties vary over space in relation to 
the parent material, climate, topography, among others, and change 

over time in response to natural processes and human activities (Jenny, 
1994; Beillouin et al., 2023). Sampling and monitoring of soils is costly 
and time consuming, as it usually requires a large number of measure-
ments and laboratory analyses (Webster and Lark, 2013). To adequately 
capture the spatial and temporal variations of soils, effective and less 
costly methods of data collection and analysis have been developed, 
including the use of visible and near-infrared (vis-NIR) and mid-infrared 
(MIR) spectroscopy (Nocita et al., 2015). 
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Following the collection of vis-NIR or MIR infrared spectra from soil 
samples, statistical models can be employed to establish a predictive 
relationship between the spectral characteristics and values of soil 
properties for which corresponding laboratory measurements are 
available (Barra et al., 2021). The use of vis-NIR and MIR spectroscopy 
for soil analysis has been extensively documented in the literature (Janik 
et al., 2009; Knox et al., 2015; Wijewardane et al., 2018; Cambou et al., 
2021) and findings have been summarized in reviews (Janik et al., 1998; 
Soriano-Disla et al., 2014; Nocita et al., 2015; Barra et al., 2021). A 
single spectrum contains numerous wavelengths, whose patterns are 
related to the chemical compounds contained in the soil sample 
(Wadoux et al., 2021). Different information is obtained depending on 
the spectral region; peaks found in the vis-NIR are less intense, usually 
made up of overtones or combinations of fundamental vibrations found 
in the MIR (Viscarra Rossel et al., 2006). As a result, it has been reported 
that more accurate predictive models can be built using MIR than vis- 
NIR (Soriano-Disla et al., 2017), but this strongly depends on the spe-
cific soil property in question; properties such as organic C, pH, clay silt 
and sand contents, or phosphorus are usually more accurately predicted 
using MIR whereas vis-NIR generally gives better results for exchange-
able aluminium and exchangeable potassium (Viscarra Rossel et al., 
2006; Johnson et al., 2019). 

Partial least squares regression (PLSR) has become the most popular 
regression model in soil spectroscopy (Viscarra Rossel and Lark, 2009; 
Soriano-Disla et al., 2014) and has been shown to perform well in many 
situations (Janik et al., 1998; Viscarra Rossel et al., 2006; Cambou et al., 
2016; Allo et al., 2020; Bachion de Santana and Daly, 2022). It is highly 
versatile, with the ability to handle multicollinearity, reducing data 
dimensionality and working effectively with small sample sizes (Wold 
et al., 2001). Usually, each soil property is modelled independently, 
ignoring the correlations that exist between properties. In cases where 
multiple dependent properties are predicted, this can result in incon-
sistent predictions and the occurrence of “pedological chimera” as 
defined by Lagacherie et al. (2022). For example, previous research has 
found that prediction accuracy of SOC increased by considering soil 
texture (Madari et al., 2006) and that ignoring the correlation between 
SOC and total nitrogen (TN), or cation exchange capacity (CEC) can lead 
to unrealistic ratio values of the soil properties in question (van der 
Westhuizen et al., 2023). As a solution, multivariate counterparts of 
PLSR have been developed, the most common being the PLS2 regression 
model, a modification of PLSR developed by Wold et al. (1983) and 
Martens and Naes (1987). PLS2 has several advantages as it enables the 
prediction of all the dependent variables simultaneously (Vandeginste 
et al., 1998), explicitly accounting for the correlation among the 
dependent variables. Inspection of the loadings of the dependent vari-
ables also gives useful interpretative information. However, in terms of 
predictive accuracy, PLS2 usually performs worse than a model fitted for 
an individual variable. Several studies, (Pedro and Ferreira, 2007; 
Blanco and Peguero, 2008; Mishra and Passos, 2022), acknowledged 
that the univariate model gave higher prediction accuracy than PLS2. 

Recently, data-driven models and algorithmic tools from the field of 
machine learning have become popular for predicting soil properties 
from spectral data (Meza Ramirez et al., 2021). Machine learning al-
gorithms can model complex, nonlinear relationships within the data 
(Jordan and Mitchell, 2015). Commonly used algorithms in soil spec-
troscopy are support vector machines (Demattê and da Silva Terra, 
2014; Deiss et al., 2020), cubist (Minasny and McBratney, 2008; Clergue 
et al., 2023), random forest (Viscarra Rossel and Behrens, 2010; 
McDowell et al., 2012; Wadoux, 2023), and artificial neural networks 
(ANNs) (Daniel et al., 2003; Wijewardane et al., 2018). The use of ANNs 
has been successful for soil property prediction and showed better per-
formance than conventional methods such as PLSR in several studies 
(Daniel et al., 2003; Viscarra Rossel and Behrens, 2010; Ng et al., 2019; 
Padarian et al., 2019). The main advantages of ANNs over conventional 
regression models are the ability to extract relevant information in high- 
dimensional datasets, the modelling of non-linear relationships between 

spectra and soil properties, and a flexibility in the definition of the al-
gorithm and objective function (Ludwig et al., 2019; Margenot et al., 
2020). Despite its flexibility, to date very few studies have attempted to 
understand whether a multivariate ANN model accounts for the corre-
lations that exist among soil properties, although promising results were 
found in Mishra and Passos (2022), Ng et al. (2019), and Ramsundar 
et al. (2015). Ng et al. (2019) tested various implementations of con-
volutional neural networks, a variant of ANNs, that uses images as in-
puts, to predict several soil properties simultaneously. 

In this paper we develop, further expand, and test the multivariate 
extension of ANNs for predicting soil properties from their vis-NIR, MIR 
and combined spectra (vis-NIR + MIR). After model development, we 
investigate the ability of the multivariate model to predict correlated 
soil properties, as compared to a model that predicts each property 
individually. The methodology is tested for total carbon, total nitrogen, 
sand, silt, and clay contents in soils from Murehwa district located in the 
sub-humid region of Zimbabwe. We hypothesize that combined 
modelling of several soil properties can eliminate “pedological chimera” 
by accounting for the correlations between the properties. The com-
parison between observed and predicted soil properties from a univar-
iate and a multivariate model is made using vis-NIR, MIR or combined 
vis-NIR + MIR spectra. 

2. Materials and methods 

2.1. Study area 

The study site is in Murehwa district (17◦39′S, 31◦47′E), a small-
holder farming area situated about 80 km northeast of Harare, the 
capital city of Zimbabwe. The study site is located about 1300 m above 
sea level and is situated in Zimbabwe’s Agroecological Region II – a zone 
of high potential for agricultural production (Mugandani et al., 2012). 
The area receives annual rainfall of between 750 and 1000 mm. The 
dominant soil type in the district are granitic derived sands (Lixisols) 
which have inherently low fertility. There are small sporadic areas with 
more fertile clay soils (Luvisols) resulting from dolerite intrusions 
(Zingore et al., 2007). 

Soil samples were collected in three villages that were randomly 
selected from Ward 28 of the district. Fifty percent of the households in 
the three villages were randomly selected to give a total of 183 farming 
households. Soil samples were collected from all agricultural fields 
including gardens and fields under fallow for each of the selected 
households. Soil samples were collected between June and July 2021 at 
two depths i) 0–20 cm ii) 20–40 cm. Sampling was carried out following 
a zig-zig transect covering each field, with a sub-sample being collected 
at 10 m distance using an auger and all the sub-samples were mixed to 
obtain a composite per field and depth. Through a participatory process 
involving focus group discussions with key informants from each village 
as well as transect walks, the common lands that can be used for grazing, 
or also to collect firewood, litter, and wild fruits, were identified as 
miombo woodlands, vleis/grasslands (these are seasonal wetlands), 
gumtree plantations and fallow or abandoned fields (now part of the 
common grazing area). Common land areas exceeding 1 km in length 
were sampled by taking a composite sample at every 100 m distance. At 
this point 10 sub-samples were collected using an auger within a 10 m 
radius to make a composite sample. A total of 677 georeferenced loca-
tions were sampled to give 1354 soil samples, 1046 samples from 
croplands and 308 samples from common lands. All soils were air dried 
and sieved through a 2 mm sieve. 

2.2. Spectral acquisition 

Spectra were acquired at the laboratory of the French Agricultural 
Research Centre for International Development (CIRAD) in Saint Denis, 
La Réunion, on all soil samples ground to 200 μm. The MIR spectra were 
measured using an Agilent 4300 handheld FTIR spectrometer (Agilent 
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Technologies, Santa Clara, CA). The device head (DRIFT) was placed 
directly on the ground soil and one spectrum was collected per sample. 
Each spectrum was the average of 80 internal spectra acquired over a 
wavenumber range between 650 and 4000 cm− 1 with a measurement 
interval of 4 cm− 1. A reference spectrum (“Silver” reference) was ob-
tained at the beginning of every spectral acquisition series and subse-
quently at hourly intervals. Spectral data was recorded as absorbance. 
The vis-NIR spectra were measured using a LabSpec 5000 (Analytical 
Spectral Devices, Inc. Boulder, CO, USA) with an optical fibre connected 
to the internal light (adapted to small sample sizes) over a wavelength of 
350–2500 nm and spectral resolution of 3 nm at 700 nm and 10 nm at 
1400/2100 nm. Three spectra were collected per sample and later 
averaged to obtain one spectrum to use for analysis. Spectra data was 
recorded as reflectance and then log-transformed [log(1/R)] to convert 
them to absorbance. 

2.3. Spectral pre-processing and analysis 

Spectral pre-processing was done to ensure the removal of any var-
iations caused by light scattering and to enhance some features within 
the spectra (Wadoux et al., 2021). The MIR spectra were trimmed to 
remove the noise at the edges leaving the range between 800 and 4000 
cm− 1. Firstly, smoothing was done using the Savitzky Golay filter with a 
window size of 11 and a polynomial order of 2 in the signal and plyer 
packages (Signal Developers, 2023) of R (R Core Team, 2023), then to 
correct for light scattering Standard Normal Variate (SNV) was used and 
finally resampling was carried out at wavelength of 10 nm. 

The vis-NIR spectra were trimmed to 20,000–4080 cm− 1. Smoothing 
was also done using the Savitzky Golay filter with a window size of 11 
and a polynomial order of 2 in the signal and plyer packages of R as well 
as the SNV to correct for light scattering. Resampling was done at 2 nm. 

The MIR and vis-NIR datasets were combined using spectra concat-
enation to create one dataset ranging between 10,000–800 cm− 1 and 
this new dataset was resampled at 8 nm wavelength before analysis 
(Fig. 1). Smoothing and scatter correction were also done using the same 
process as for the MIR spectra. 

2.4. Laboratory analysis 

A subset of 230 soil samples, corresponding to 17% of the total 
number of samples, was selected for laboratory analysis. This number of 
samples was determined by striking a balance between the cost of the 
soil analysis and the quantity required to obtain accurate estimates with 
spectroscopy. The selection was based on spectra similarity and the most 
representative spectra were chosen using the Kennard Stone algorithm 
as implemented in the Unscrambler X 10.5 Software (CAMO Software 
Inc., Oslo, Norway). Total carbon and total nitrogen were determined by 
the Dumas elemental dry combustion method using an Elementar 

VarioMax Cube. Soil texture analysis was done using the hydrometer 
method following Gee and Bauder (1986). Following the laboratory 
analyses, two soil samples were identified as outliers and were excluded 
from further analysis (i.e. they had unrealistic high carbon and nitrogen 
values). Consequently, a total of 228 samples were used for the model 
building in the next step. Descriptive statistics of the laboratory analyses 
are summarized in Table 1. 

2.5. Modelling 

2.5.1. Artificial neural networks 
An ANN model is an interconnected network of numerous processing 

units called neurons (Hastie et al., 2009). Neurons are grouped together 
to form a layer; they are further connected to neurons in adjacent layers 
but not to neurons in the same layer. The number of neurons is a user- 
defined hyperparameter, and an ANN structure has an input layer, one 
or more hidden layers, and an output layer. The number of units in the 
input and output layers is determined by the data, but the hidden layer 
can be adjusted by the user. The connection strength between two 
neurons is determined by a parameter called weight complemented by a 
bias component. Mathematical functions known as activation methods 
are applied to the weighted sum of inputs in a neuron to introduce non- 
linearity in the output. These activation functions allow the ANN to 
model the complex relationship between the inputs and outputs. Several 
activation functions are available, and, in this study, we used the 
Rectified Linear Units (ReLU) function, which is known to output zero 
when a value is negative and keeps the input itself when it is positive. 
Model training involves finding the set of weights and bias that give the 
optimal predictions using an objective function as criterion. Optimiza-
tion algorithms are used to optimize the weights and bias so they 
minimize the error of prediction. In this study we used a feed forward 
ANN model, which involves successive feed forward pathways flowing 
unidirectionally from the input to output layers through several hidden 
layers (Hastie et al., 2009). The Adaptative Moment Estimation (Adam) 
logarithm was used to train the model. 

Fig. 1. Example of two combined vis-NIR and MIR spectra used in this study.  

Table 1 
Summary statistics of the measured properties of the 228 soil samples.  

Property Min Q1 Median Q3 Mean Max 

Total C (g kg− 1) 1.85 3.94 6.90 14.38 10.47 47.20 
Total N (g kg− 1) 0.10 0.23 0.39 0.95 0.69 3.52 
Sand (%) 28.44 72.29 83.84 88.22 77.76 94.92 
Clay (%) 3.08 6.08 9.16 16.10 13.78 62.16 
Silt (%) 2.00 5.00 6.70 11.40 8.46 39.40 
C:N ratio 9.97 13.53 15.40 18.18 16.87 51.98 
C:Clay ratio 0.01 0.04 0.07 0.12 0.09 0.54  
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2.5.2. Partial least squares regression 
PLSR is a commonly used modelling technique to predict a set of 

dependent variables (y) from a set of predictor variables (X) usually 
when there are many highly collinear predictor variables (Wold et al., 
2001). The PLSR algorithm searches for a set of factors that perform 
simultaneous decomposition of the predictor and dependent variables 
whilst maximizing the covariance between them with the aim of finding 
a few factors that explain most of the variation. Here, X and y are 
decomposed into factors (T) and factor loadings (P and q) in such a way 
that the first few factors explain the most variation. The factors that 
remain can be ignored, that is why residuals E and f are added. 

X = TP+E  

Y = Tq+ f 

This way, predictions of the dependent variable (Y) can be made 
using the combination of factor scores and factor loadings of the new 
spectrum (X) (Viscarra Rossel et al., 2006). In this study we used the 
orthogonal score algorithm for a single response PLSR model using ten 
components (Wadoux et al., 2021). 

2.6. Model building and fitting 

Two types of ANN models were built, a univariate model which 
predicts one soil property at a time, and a multivariate model which 
predicts more than one property at the same time (Fig. 2). The univariate 
model was made up of one input layer, three hidden layers and one 
output layer. The first two hidden layers had 128 and 64 neurons, 
respectively, and they were followed by a dropout layer with a dropout 
rate of 0.2 to help in minimizing issues of overfitting. The next hidden 
layer had 32 neurons and it was followed by an output layer with a 
single neuron. The adaptive moment estimation (Adam) optimizer was 
used to update the model weights. The loss function used was the mean 
squared error, with a batch size of 64 and a maximum of 150 epochs. 

The multivariate model was made up of one input layer, four hidden 

layers and an output layer predicting five outputs simultaneously. The 
first two hidden layers had 320 and 128 neurons, respectively, and they 
were separated by a dropout layer with a dropout rate of 0.2. The sub-
sequent layers had 64 and 32 neurons. For each of the hidden layers the 
ReLU activation was used. The five output layers had one neuron each 
and the linear activation was used. The three soil texture fractions sand, 
clay and silt are reported in percentage values, and they need to add to 
100. This was achieved in the model by passing the input vector of the 
previous layer through a softmax layer which returns an output of 
similar length with each value ranging between 0 and 1 and the vector 
adding up to 1 (Wadoux, 2019). Subsequently, a lambda function was 
then defined to multiply the three outputs by 100. The weights were 
estimated with the Adam optimizer using the mean absolute percentage 
error loss function. This function is independent of the units of the soil 
properties, so that all properties have similar importance during model 
fitting. The model was trained with a batch size of 64 and 150 epochs. 
The choice of the number and type of layers and neurons was based on 
trial and error. 

The models were trained using vis-NIR, MIR and the combined vis- 
NIR + MIR data. The two ANN models were compared to a univariate 
PLSR model to gauge their performance against a conventional model. 
The ANN models in this study were built using the keras package (Allaire 
and Chollet, 2023) in R with tensorflow as backend (Allaire and Tang, 
2023) and the PLSR was built using the pls package (Liland et al., 2023) 
also in R. 

2.7. Evaluating the quality of predictions 

The measured values of the soil properties from the laboratory an-
alyses used to fit the models were split into training and validation sets 
using k-fold cross-validation to assess prediction accuracy of the model 
predictions on unseen data. Ten approximately equal-sized folds were 
created. Nine folds were used as a calibration set with the remaining fold 
being used for validation. The procedure was repeated until each of the 
ten folds had been used once as a validation set. Each validation fold had 
the predictions computed. The set.seed () function in R was used to 
ensure the production of consistent and reproducible sets of random 
numbers. We set the value once at the start of the loop sequence as such 
each loop sequence was expected to yield the same sequence of random 
numbers. Doing this, ensured the same validation/calibration sets were 
used across models and iterations of the cross-validation strategies. The 
validation statistics hereafter were calculated from the pairwise com-
parison of measured and predicted values obtained from all folds. 

We calculated the mean error (ME), the root mean square error 
(RMSE) and the coefficient of determination R2. Each represent a spe-
cific aspect of prediction quality. The indices were calculated as follows: 

The ME: 

ME =
1
n
∑n

i=1
obsi − predi (1) 

Where obsi and predi represent the measured and predicted values, 
respectively, and n the total number of measured values. The ideal ME 
value is 0, with positive or negative values indicating systematic over or 
under prediction, respectively. 

The RMSE: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑n

i=1

(obsi − predi)
2

n

√

(2)  

where obsi are the measured values and predi are the predicted values. 
The RMSE indicates the magnitude of error in the unit of the soil 
property, it has an optimal value of 0. The R2, was calculated as: 

R2 = 1 −
RSS
TSS

(3) Fig. 2. Schematic representation of the (a) univariate and (b) multivariate 
models built in this study. 
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where RSS is Residual Sum of Squares and TSS is Total Sum of Squares. It 
has an optimal value of 1 but can be negative if the model is a worse 
predictor than the mean of the measured values taken as prediction. The 
RSS and TSS are calculated as follows: 

RSS =
∑

(obsi − predi)
2  

TSS =
∑

(obsi − obsi)
2 

Where: 
obsi represents the mean value of the observed data. 

3. Results 

In section 3.1 we present the prediction results obtained by the three 
models: univariate PLSR (PLSR-UV), univariate ANN (ANN-UV), multi-
variate ANN (ANN-MV) using either the vis-NIR, MIR or the combined 
vis-NIR + MIR spectra. 

3.1. Model comparison using vis-NIR, MIR and combined vis-NIR + MIR 
spectra 

The best prediction models were obtained using MIR spectra, fol-
lowed by vis-NIR + MIR spectra and lastly by vis-NIR spectra (Table 2). 
Model predictions based on MIR spectra had consistently higher R2 

values and lower RMSE values, and this difference was significant when 
compared to predictions based on vis-NIR spectra. For example, for 
prediction of total C with the PLSR-UV model, the R2 and RMSE values 
were 0.91 and 2.87 g kg− 1 vs 0.74 and 4.78 g kg− 1 for MIR and vis-NIR 
respectively. However, the difference was smaller, when comparing 
predictions based on MIR spectra vs combined vis-NIR + MIR spectra, 
particularly for the predictions of soil sand and clay contents where the 
differences in R2 and RMSE were small. For example, the prediction of 
soil clay content with the PLSR-UV model had R2 and RMSE values of 
0.74 and 5.68% vs 0.73 and 5.82% for MIR spectra and combined vis- 
NIR + MIR spectra, whilst those for vis-NIR spectra were 0.59 and 
7.15%. 

The PLSR-UV model performed marginally better than the two ANN 
models for the prediction of total C, total N, and soil sand and clay 
contents (Table 2), although in some instances the differences were not 
significant. To give an example, using MIR spectra, for total carbon 
predictions, the PLSR-UV model had an R2 of 0.91 and RMSE of 2.87 g 
kg− 1, whereas for the ANN-MV model the values were 0.89 and 3.09 g 
kg− 1, and for the ANN-UV 0.89 and 3.13 g kg− 1. A similar trend was also 
observed for total nitrogen; the PLSR-UV model had an R2 of 0.87 and 
0.24 g kg− 1, followed by the ANN-MV model with 0.85 and 0.26 g kg− 1, 

and the ANN-UV model with 0.83 and 0.28 g kg− 1. The same trend was 
observed for the prediction of soil clay content. For predictions of the 
soil sand content, the PLSR-UV model performed best with R2 of 0.8 and 
RMSE of 6.68%, however the two ANN models had similar R2 (0.77), the 
difference between them being that the ANN-MV had a lower RMSE of 
7.15% compared to the 7.28% of the ANN-UV model. 

The best model for prediction of soil silt content was the ANN-UV 
model based on vis-NIR + MIR spectra with an R2 of 0.71 and RMSE 
of 4.99. The ANN-UV model also performed better using NIR spectra 
where it had significantly higher R2 of 0.68. Using MIR spectra, the 
ANN-MV model had the best results followed by the PLSR-UV model and 
lastly the ANN-UV model (Table 2). 

The results presented hereafter focus on the ANN models developed 
using MIR spectra as these were providing the best results in nearly all 
cases (Table 2). 

3.2. Prediction residuals plots 

Fig. 3 shows a comparison of the residuals plots for both the ANN-UV 
and ANN-MV models. For the prediction of total C both models show a 
narrow pattern around the zero line, although the ANN-MV model has 
an equal distribution of residual values above and below this line unlike 
the ANN-UV model for which there is a high number of residual values 
below the zero line. Between 0 and 20 g C kg− 1 both models show values 
close to the zero line. As the soil C values increase, however, the scatter 
of the residuals also increases. A similar pattern is evident for the pre-
dictions of total N, where at values between 0 and 1.2 g N kg− 1 the re-
siduals are scattered close to the zero line, but the scatter increases for 
larger values. The ANN-UV model also has a significant number of 
values below the zero line. 

For the prediction of soil texture both models show comparable 
patterns, with most values scattered around the zero line. For the soil 
clay and silt predictions the scatter increases after 25% and 10% 
respectively whilst for sand content there is a large scatter between 
0 and 70% which decreases as the sand content increases. 

3.3. Correlations between soil properties 

The ANN-UV and ANN-MV models showed similar patterns of cor-
relation to the measured data for all soil properties using the Pearson’s 
linear correlation coefficient (r) (Fig. 4). There are strong correlations 
between measured properties: total C vs total N, sand vs clay content as 
well as silt vs clay content with both the ANN-UV and ANN-MV models 
capturing these patterns well. On the other hand, there were weaker 
correlations in the measured data for total C vs clay content (r = 0.32) 
and total N vs clay content (r = 0.32), with high linear correlations for 

Table 2 
Comparison of univariate PLSR (PLSR-UV), univariate (ANN-UV) and multivariate (ANN-MV) neural network models for three spectral data set (i.e. vis-NIR, MIR or 
combined vis-NIR + MIR spectra using the mean error (ME), root mean square error (RMSE) and the coefficient of determination R2.   

vis-NIR MIR vis-NIR + MIR  

Model ME RMSE R2 Model ME RMSE R2 Model ME RMSE R2 

Total C PLSR-UV 0.07 4.78 0.74 PLSR-UV 0.09 2.87 0.91 PLSR-UV 0.05 3.99 0.82  
ANN-UV − 0.24 5.41 0.66 ANN-UV 0.52 3.13 0.89 ANN-UV 0.06 4.99 0.71  
ANN-MV − 2.69 6.66 0.49 ANN-MV − 0.79 3.09 0.89 ANN-MV − 1.13 4.23 0.79 

Total N PLSR-UV 0.00 0.35 0.72 PLSR-UV 0.01 0.24 0.87 PLSR-UV 0.01 0.31 0.78  
ANN-UV 0.05 0.43 0.59 ANN-UV 0.01 0.28 0.83 ANN-UV 0.02 0.41 0.64  
ANN-MV − 0.18 0.48 0.48 ANN-MV − 0.09 0.26 0.85 ANN-MV − 0.07 0.31 0.78 

Sand PLSR-UV 0.12 9.19 0.63 PLSR-UV 0.19 6.68 0.80 PLSR-UV 0.05 7.08 0.78  
ANN-UV − 2.86 10.38 0.52 ANN-UV − 1.04 7.28 0.77 ANN-UV − 0.48 9.38 0.61  
ANN-MV 2.63 10.2 0.54 ANN-MV 0.17 7.15 0.77 ANN-MV 1.39 7.72 0.74 

Clay PLSR-UV − 0.07 7.15 0.59 PLSR-UV − 0.07 5.68 0.74 PLSR-UV − 0.03 5.82 0.73  
ANN-UV − 0.13 7.53 0.55 ANN-UV − 0.65 6.18 0.69 ANN-UV − 0.98 6.62 0.65  
ANN-MV − 1.75 7.83 0.51 ANN-MV − 0.08 5.81 0.73 ANN-MV 0.98 5.92 0.72 

Silt PLSR-UV − 0.06 4.15 0.36 PLSR-UV − 0.02 3.49 0.55 PLSR-UV 0.05 3.67 0.50  
ANN-UV − 0.27 5.29 0.68 ANN-UV − 0.56 3.56 0.53 ANN-UV 0.06 4.99 0.71  
ANN-MV − 0.83 4.31 0.31 ANN-MV − 0.04 3.42 0.57 ANN-MV − 0.35 3.71 0.49  
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both properties at clay values between 0 and 15%. This pattern is similar 
for both the ANN-UV and ANN-MV models. 

Fig. 5 shows the soil C:N and C:Clay ratios for the two ANN models 
compared to the ratios obtained from the measured values. The soil C:N 
ratio of the measured values ranges between 10 and 25 with a pattern 
similar to that of the ratio obtained from the predicted values using the 
ANN-MV and ANN-UV models. However, there are several large values 
predicted by the ANN-UV model (i.e. values larger than 75) as well as 
several negative values. The ANN-MV model better captured the soil C:N 
ratio with all the values within 10 and 25, showing less variability and 
fewer large and no unrealistic (i.e. negative) values. 

A similar pattern was observed for the C:Clay ratios, where the ANN- 
UV model had several large values; some higher than 0.5 as well as some 
values below zero. The ANN-MV model showed less variability, and like 
the measured data, it had few numbers of large values. Generally, the C: 
Clay ratios ranged between 0.01 and 0.5 across all the models except for 
the ANN-UV model. 

4. Discussion 

4.1. Comparison of vis-NIR, MIR, and vis-NIR + MIR 

The best results for the models were observed using the MIR spectra 
followed by the combined vis-NIR + MIR spectra and lastly the vis-NIR 
spectra. This result could be explained by the fact that in the MIR region 
there are fundamental vibrations whereas only overtones and combi-
nations bands are present in the vis-NIR regions. Several other studies 
report similar results, particularly for soil carbon predictions where MIR 
outperforms vis-NIR (Viscarra Rossel et al., 2006; Vohland et al., 2014; 
Wijewardane et al., 2018). The soils used in this study have on average a 
high sand content (78%) (Table 1). This is a common characteristic in 
the district, primarily due to the prevalence of granitic-derived soils 
(Zingore et al., 2011). In their study, Viscarra Rossel et al. (2006) sug-
gest that MIR spectroscopy has a good ability to discriminate quartz and 
clay minerals thereby allowing for good characterization of soil prop-
erties. Indeed, functional groups related to quartz minerals have distinct 
peaks in the MIR spectra (Janik et al., 1998). This observation could 
explain the superior results obtained using MIR spectroscopy in our 
study. 

Fig. 3. Residual plots for total C, total N and clay, sand and silt contents as predicted by a) univariate (ANN-UV), and b) multivariate (ANN-MV) artificial neural 
network models. 
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Fig. 4. Scatterplot showing the relationship between total carbon, total nitrogen and clay, sand, and silt contents for a) measured values, and b) the univariate (ANN- 
UV), c) the multivariate (ANN-MV) artificial neural network models. 
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The use of combined vis-NIR + MIR spectra did not improve the 
predictive accuracy of soil properties in this study. It is important to 
state that several studies report different results about this. On the one 
hand, a study conducted by Johnson et al. (2019) reported an improved 
accuracy with combined spectra for several soil properties. On the other 
hand, it has been shown that because the predictions with MIR spectra 
alone are already highly accurate, combining spectra either results in 
slightly worse results (Viscarra Rossel et al., 2006; Shao and He, 2011; 
Ng et al., 2019) or produces results that are equally comparable to MIR 
alone (Knox et al., 2015). 

4.2. Model performance of PLSR vs ANN 

The two ANN models developed in this study, namely the univariate 
and the multivariate models, provided accurate prediction of soil 
properties and their performance was comparable to the commonly used 
PLSR model. The PLSR model had slightly higher R2 values and lower 
RMSE for the five predicted soil properties. This is similar to the findings 
by Kuang et al. (2015) and Margenot et al. (2020) who showed that the 
PLSR and ANN models tend to give comparable predictions in their 
studies that had a rather small and homogeneous dataset. On the other 
hand, several other studies have concluded that ANN models outperform 
conventional models like PLSR (Wijewardane et al., 2018; Ludwig et al., 
2019; Margenot et al., 2020). The fact that this was not the case in our 
study may be attributed to the small dataset (i.e. 228 samples) used to fit 
the models. Artificial neural networks are popular in soil spectroscopy 

research because they can deal with complex non-linear patterns found 
in data, can handle correlated predictors, and perform well in many 
situations. However, they have many parameters, so that large datasets 
(n > 20,000) are usually necessary to estimate them (Jordan and 
Mitchell, 2015). The process of building and training an ANN model is 
also complex because it involves finding an appropriate structure (i.e. 
number and types of layers and neurons per layer) which is often a 
subjective process (Hastie et al., 2009), although some optimization 
techniques exist such as Bayesian optimization (Wadoux, 2019; Shen 
and Viscarra Rossel, 2021). Overall, from our study it is not clear 
whether the time spent, and complexity involved in building an ANN 
model outweighs the added value of using a non-linear machine learning 
model. 

4.3. Comparison of multivariate and univariate ANN models 

The possibility for a model to predict several variables simulta-
neously is interesting since the soil properties are usually correlated. The 
ANN-MV model performed better than its univariate version in pre-
dictions of total carbon and total nitrogen as it had consistently higher 
R2 and lower RMSE values (Table 2). The model performance is also 
confirmed by the residual plots (Fig. 3) where no atypical behaviour is 
seen unlike for the univariate model where there seems to be a pattern. 
The correlations between total C and total N were captured by the 
multivariate model (Fig. 4) as evidenced by the high linear correlation 
coefficient (r = 0.99) and the similar patterns of the predicted and 

Fig. 5. Boxplots of the (a) soil C:N ratios and (b) C:Clay ratios as calculated with measured values and predicted by the ANN-UV and ANN-MV models.  
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measured values. We can thus deduce that when making simultaneous 
predictions a multivariate model learns the correlation between the data 
and uses this information to enhance predictions. A similar conclusion 
was made in Ng et al. (2019) and Ramsundar et al. (2015). In Ng et al. 
(2019), the multitask convolutional neural network was able to make 
simultaneous predictions of multiple outputs whilst maintaining their 
correlation. In our study, for the prediction of soil texture, particularly 
for sand and clay, the univariate and multivariate models had compa-
rable results, with similar correlation coefficient between predicted and 
measured properties, albeit with the multivariate showing lower RMSE 
values (Table 2). In their study using a multi-task convolutional network 
model, Ng et al. (2019) reported that although they did not add an 
explicit accounting of the correlations between properties during their 
model fitting process, multi-task models were better than single task 
models at maintaining correlations. This is a particularly important trait 
especially when considering soil properties like texture, where main-
taining accurate percentages of the texture variables is crucial since soil 
texture plays an important role in the stabilization of organic carbon in a 
soil (Hassink, 1997; Laub et al., 2023). 

Though there exists a multivariate version of PLSR, known as PLS2, 
we opted not to test it because several studies have shown that the 
univariate version of PLSR had better predictive capabilities (Vande-
ginste et al., 1998; Blanco and Peguero, 2008). Brereton (2000) argued 
that the PLS2 model’s ability of providing all predictions in a single 
model can be advantageous, simplifying computations. However, in 
many instances the predictions tend to be less accurate than when each 
variable is independently predicted with PLSR. Here we used the uni-
variate version of PLSR as a benchmark and focused instead on testing 
the multivariate and univariate versions of the ANN model. 

4.4. Estimating ratios and compositions 

We studied the predictions of two key ratios: the soil C:N ratio, which 
is calculated using total carbon and total nitrogen values and is a sen-
sitive indicator of soil quality and for assessing the carbon and nitrogen 
nutrition balance of soils. The second ratio is the C:Clay ratio, calculated 
using soil carbon and clay content, which has been proposed as an in-
dicator for soil organic carbon status and soil structure quality (Poeplau 
and Don, 2023). We observed that the predictions made by the ANN-MV 
model gave significantly better results for both ratios (Fig. 5). The range 
of values for the soil C:N ratio were all within the range between 10 and 
25, comparable to the measured values, whereas the ANN-UV model 
gave more unrealistic values including some negative ones. Previous 
studies in the study area have shown that soil carbon concentrations in 
the most fertile soils rarely exceed 10 g C kg− 1 (Masvaya et al., 2010; 
Zingore et al., 2011). 

A similar trend was also observed when calculating the C:Clay ratio, 
with unrealistic values being predicted by the ANN-UV model including 
negative values. Soil clay content plays an important role in the for-
mation of soil organic carbon since clay minerals have a high specific 
surface area and carry a charge, enabling them to bind, and thereby 
chemically stabilize, organic matter. Clay aggregates also provide mi-
cropores for the physical protection of soil organic carbon (Wattel- 
Koekkoek et al., 2001). The C:Clay ratios obtained in this study range 
between 1:10–1:13 and sometimes even lower, which suggests that 
these soils are degraded (Poeplau and Don, 2023). However, it is worth 
noting that the soils in the study area are generally low in clay and high 
in sand content (Table 1), as they are granitic derived. When the soil clay 
plus silt fraction is low, usually little physical protection of organic 
matter occurs to influence soil physical properties (Feller and Beare, 
1997; Nyamangara et al., 2014). Additionally, soil clay content does not 
consistently serve as an accurate predictor of SOC, particularly in 
tropical soils that have high concentrations of aluminium and iron ox-
ides (Khomo et al., 2017; Kirsten et al., 2021). 

We observed that the ANN-MV model was able to eliminate the 
problem of unrealistic values of soil C:N and C:Clay ratios making it a 

better model for predictions of the two ratios. Whilst we predicted the 
soil properties separately and then calculated the ratios, an alternative 
method would be to predict the ratios directly from the models, a 
common approach in digital soil mapping studies (van der Westhuizen 
et al., 2023). This would require fitting specific parameters during 
model training to ensure that the results are generated as ratios. Further 
studies should aim to explore this method to ascertain its feasibility. 

Compositional data such as soil texture need to add up to a 100 
(Jaconi et al., 2019), and ideally this is done at the prediction phase (i.e. 
not with ex-post correction on the particle size fractions). When sand, silt 
and clay fractions are predicted independently, as is the case with uni-
variate models, it tends to give results that do not sum to 100. In this 
study, we observed that the predicted values of sand, silt and clay 
contents using the univariate model did not sum up to 100 even though 
the laboratory data did. A common strategy in this case is to use the 
additive log-ratio transformation (Odeh et al., 2003), where the model is 
fitted on transformed variables and a back-transformation is made. In 
our case, we considered the ANN-MV model flexible since we were able 
to create a constraint for texture prediction as described by Wadoux 
(2019) (i.e., by passing the input vector through a softmax layer that 
returns values between 0 and 1, and using a lambda function to multiply 
these values by 100). This ensures that all soil texture predictions 
summed to 100, eliminating the need for a subsequent step of back- 
transformation. 

5. Conclusion 

We tested two versions of an artificial neural network (ANN) model: 
a multivariate model which predicts all soil properties at once, and a 
univariate model, which predicts one soil property at a time. We applied 
both versions in the prediction of five soil properties, namely, total C, 
total nitrogen, sand, clay, and silt contents using their vis-NIR, MIR and 
combined vis-NIR and MIR spectra. The multivariate model had con-
straints to allow the prediction of compositional variables. We tested the 
two models in terms of reproduction of correlations between properties 
and quality of predictions, and through comparison with a univariate 
partial least-squares model (PLSR). We also tested different sets of input 
data, using either vis-NIR, MIR and a combination thereof. From the 
results and discussion, we draw the following conclusions:  

- There was no improvement in prediction accuracy when using ANN 
compared to PLSR. For predicted soil properties, total C, total N, sand 
and clay content, PLSR-UV had similar prediction accuracy to the 
two ANN models. Although we used a small dataset and the differ-
ences between the two models were not significant, it remains un-
clear whether time spent, and complexity involved in building an 
ANN model outweighs the added value of using a non-linear machine 
learning model.  

- The multivariate ANN model produced slightly better results for 
predictions of nearly all properties compared to its univariate 
counterpart. It consistently had higher R2 and low RMSE values and 
was better at maintaining the correlation patterns observed between 
the soil properties.  

- The multivariate model was also better at giving realistic values for 
soil C:N and C:Clay ratios, and we found it more flexible as we could 
add a constraint to have the soil texture predictions add up to 100 
without requiring back-transformation. 

- Best models were obtained using MIR spectra for all the soil prop-
erties and there was no added advantage on the use of combined vis- 
NIR + MIR spectra. We speculate that the ability of MIR to 
discriminate quartz and clay minerals allows for good characteriza-
tion of soil properties, and since these soils are high in quartz there 
was no advantage of using the combined vis-NIR + MIR spectra. 

Overall, we found a clear advantage of using a multivariate neural 
network for the prediction of correlated soil properties. The multivariate 
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model helps to keep realistic ratio values and this has strong implica-
tions for assessment studies that make use of such predicted soil values. 
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Demattê, J.A.M., da Silva Terra, F., 2014. Spectral pedology: a new perspective on 
evaluation of soils along pedogenetic alterations. Geoderma 217–218, 190–200. 
https://doi.org/10.1016/j.geoderma.2013.11.012. 

Feller, C., Beare, M.H., 1997. Physical control of soil organic matter dynamics in the 
tropics. Geoderma 79, 69–116. https://doi.org/10.1016/S0016-7061(97)00039-6. 

Gee, G.W., Bauder, J.W., 1986. Particle-size analysis. In: Klute, A. (Ed.), Methods of Soil 
Analysis, Part 1. Physical and Mineralogical Methods-Agronomy. Agronomy Society 
of America/Soil Science Society of America, Madison, Wisconsin, pp. 384–411. 

Hassink, J., 1997. The capacity of soils to preserve organic C and N by their association 
with clay and silt particles. Plant Soil 191, 77–87. https://doi.org/10.1023/A: 
1004213929699. 

Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning: Data 
Mining, Inference, and Prediction, 2nd ed. Springer. https://doi.org/10.1007/978-0- 
387-84858-7. 

Jaconi, A., Vos, C., Don, A., 2019. Near infrared spectroscopy as an easy and precise 
method to estimate soil texture. Geoderma 337, 906–913. https://doi.org/10.1016/ 
j.geoderma.2018.10.038. 

Janik, L.J., Merry, R.H., Skjemstad, J.O., 1998. Can mid infrared diffuse reflectance 
analysis replace soil extractions? Aust. J. Exp. Agric. 38, 681–696. https://doi.org/ 
10.1071/EA97144. 

Janik, L.J., Forrester, S.T., Rawson, A., 2009. The prediction of soil chemical and 
physical properties from mid-infrared spectroscopy and combined partial least- 
squares regression and neural networks (PLS-NN) analysis. Chemom. Intell. Lab. 
Syst. 97, 179–188. https://doi.org/10.1016/j.chemolab.2009.04.005. 

Jenny, H., 1994. Factors of Soil Formation a System of Quantitative Pedology. Courier 
Corporation. 

Johnson, J.M., Vandamme, E., Senthilkumar, K., Sila, A., Shepherd, K.D., Saito, K., 2019. 
Near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for 
assessing soil fertility in rice fields in sub-Saharan Africa. Geoderma 354, 113840. 
https://doi.org/10.1016/j.geoderma.2019.06.043. 

Jordan, M.I., Mitchell, T.M., 2015. Machine learning: trends, perspectives, and prospects. 
Science 349, 255–260. https://doi.org/10.1126/science.aaa8415. 

Khomo, L., Trumbore, S., Bern, C.R., Chadwick, O.A., 2017. Timescales of carbon 
turnover in soils with mixed crystalline mineralogies. Soil 3, 17–30. https://doi.org/ 
10.5194/soil-3-17-2017. 

Kirsten, M., Mikutta, R., Vogel, C., Thompson, A., Mueller, C.W., Kimaro, D.N., 
Bergsma, H.L.T., Feger, K.H., Kalbitz, K., 2021. Iron oxides and aluminous clays 
selectively control soil carbon storage and stability in the humid tropics. Sci. Rep. 11, 
1–12. https://doi.org/10.1038/s41598-021-84777-7. 

Knox, N.M., Grunwald, S., McDowell, M.L., Bruland, G.L., Myers, D.B., Harris, W.G., 
2015. Modelling soil carbon fractions with visible near-infrared (VNIR) and mid- 
infrared (MIR) spectroscopy. Geoderma 239–240, 229–239. https://doi.org/ 
10.1016/j.geoderma.2014.10.019. 

Kuang, B., Tekin, Y., Mouazen, A.M., 2015. Comparison between artificial neural 
network and partial least squares for on-line visible and near infrared spectroscopy 
measurement of soil organic carbon, pH and clay content. Soil Tillage Res. 146, 
243–252. https://doi.org/10.1016/j.still.2014.11.002. 

Lagacherie, P., Buis, S., Constantin, J., Dharumarajan, S., Ruiz, L., Sekhar, M., 2022. 
Evaluating the impact of using digital soil mapping products as input for spatializing 
a crop model: the case of drainage and maize yield simulated by STICS in the 
Berambadi catchment (India). Geoderma 406, 115503. https://doi.org/10.1016/j. 
geoderma.2021.115503. 

Lal, R., 2016. Soil health and carbon management. Food Energy Secur. 5, 212–222. 
https://doi.org/10.1002/fes3.96. 

Laub, M., Corbeels, M., Couëdel, A., Ndungu, S.M., Mucheru-Muna, M.W., Mugendi, D., 
Necpalova, M., Waswa, W., Van De Broek, M., Vanlauwe, B., Six, J., 2023. Managing 
soil organic carbon in tropical agroecosystems: evidence from four long-term 
experiments in Kenya. Soil 9, 301–323. https://doi.org/10.5194/soil-9-301-2023. 

Liland, K., Mevik, B.-H., Wehrens, R., Hiemstra, P., 2023. pls: Partial Least Squares and 
Principal Component Regression [WWW Document], 2.8-2. URL. https://github. 
com/khliland/pls (accessed 8.23.23).  

R.W. Nyawasha et al.                                                                                                                                                                                                                          

https://doi.org/10.1016/j.geodrs.2024.e00805
https://doi.org/10.1016/j.geodrs.2024.e00805
https://tensorflow.rstudio.com/
https://github.com/rstudio/tensorflow
https://doi.org/10.1016/j.catena.2020.104452
https://doi.org/10.1016/j.saa.2022.121441
https://doi.org/10.1016/j.saa.2022.121441
https://doi.org/10.1016/j.trac.2020.116166
https://doi.org/10.1016/j.trac.2020.116166
https://doi.org/10.1038/s41467-023-39338-z
https://doi.org/10.1038/s41467-023-39338-z
https://doi.org/10.1016/j.talanta.2008.07.015
https://doi.org/10.1039/b003805i
https://doi.org/10.1016/j.geoderma.2015.07.007
https://doi.org/10.1016/j.geoderma.2015.07.007
https://doi.org/10.1016/j.soisec.2021.100024
https://doi.org/10.1016/j.soisec.2023.100088
https://doi.org/10.1071/SR02027
https://doi.org/10.1016/j.geoderma.2020.114227
https://doi.org/10.1016/j.geoderma.2020.114227
https://doi.org/10.1016/j.geoderma.2013.11.012
https://doi.org/10.1016/S0016-7061(97)00039-6
http://refhub.elsevier.com/S2352-0094(24)00052-X/rf0080
http://refhub.elsevier.com/S2352-0094(24)00052-X/rf0080
http://refhub.elsevier.com/S2352-0094(24)00052-X/rf0080
https://doi.org/10.1023/A:1004213929699
https://doi.org/10.1023/A:1004213929699
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1016/j.geoderma.2018.10.038
https://doi.org/10.1016/j.geoderma.2018.10.038
https://doi.org/10.1071/EA97144
https://doi.org/10.1071/EA97144
https://doi.org/10.1016/j.chemolab.2009.04.005
http://refhub.elsevier.com/S2352-0094(24)00052-X/rf0110
http://refhub.elsevier.com/S2352-0094(24)00052-X/rf0110
https://doi.org/10.1016/j.geoderma.2019.06.043
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.5194/soil-3-17-2017
https://doi.org/10.5194/soil-3-17-2017
https://doi.org/10.1038/s41598-021-84777-7
https://doi.org/10.1016/j.geoderma.2014.10.019
https://doi.org/10.1016/j.geoderma.2014.10.019
https://doi.org/10.1016/j.still.2014.11.002
https://doi.org/10.1016/j.geoderma.2021.115503
https://doi.org/10.1016/j.geoderma.2021.115503
https://doi.org/10.1002/fes3.96
https://doi.org/10.5194/soil-9-301-2023
https://github.com/khliland/pls
https://github.com/khliland/pls


Geoderma Regional 37 (2024) e00805

11

Ludwig, B., Murugan, R., Parama, V.R.R., Vohland, M., 2019. Accuracy of estimating soil 
properties with mid-infrared spectroscopy: implications of different chemometric 
approaches and software packages related to calibration sample size. Soil Sci. Soc. 
Am. J. 83, 1542–1552. https://doi.org/10.2136/sssaj2018.11.0413. 

Madari, B.E., Reeves, J.B., Machado, P.L.O.A., Guimarães, C.M., Torres, E., McCarty, G. 
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