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Summary

Sustainable agriculture practices are often hampered by the prohibitive costs associated with the generation of
fine-resolution soil maps. Recently, several papers have been published highlighting how visible and near infrared
(vis–NIR) reflectance spectroscopy may offer an alternative to address this problem by increasing the density of
soil sampling and by reducing the number of conventional laboratory analyses needed. However, for farm-scale
soil mapping, previous studies rarely focused on sample optimization for the calibration of vis–NIR models or
on robust modelling of the spatial variation of soil properties predicted by vis–NIR spectroscopy. In the present
study, we used soil vis–NIR spectroscopy models optimized in terms of both number of calibration samples and
accuracy for high-resolution robust farm-scale soil mapping and addressed some of the most common pitfalls
identified in previous research. We collected 910 samples from 458 locations at two depths (A, 0–0.20 m; B,
0.80–1.0 m) in the state of São Paulo, Brazil. All soil samples were analysed by conventional methods and
scanned in the vis–NIR spectral range. With the vis–NIR spectra only, we inferred statistically the optimal set
size and the best samples with which to calibrate vis–NIR models. The calibrated vis–NIR models were validated
and used to predict soil properties for the rest of the samples. The prediction error of the spectroscopic model was
propagated through the spatial analysis, in which robust block kriging was used to predict particle-size fractions
and exchangeable calcium content for each depth. The results indicated that statistical selection of the calibration
samples based on vis–NIR spectra considerably decreased the need for conventional chemical analysis for a
given level of mapping accuracy. The methods tested in this research were developed and implemented using
open-source software. All codes and data are provided for reproducible research purposes.

Highlights

• Vis–NIR spectroscopy enables an increase in sampling density with little additional cost.
• Guided selection of vis–NIR calibration samples reduced the need for conventional soil analysis.
• Error of spectroscopic model prediction was propagated by spatial analysis.
• Maps from the vis–NIR augmented dataset were almost as accurate as those from conventional soil analysis.

Introduction

Farmers need accurate information about the spatial distribution

of soil properties to support sustainable agricultural production

systems. Conventional methods of soil sampling and analysis are
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generally used to derive soil information at sampling locations,

but these methods are expensive and require time-consuming field

campaigns. Furthermore, they are frequently unable to account

for the large spatial variation of soil properties. For soil mapping,

the sampling density required is often large. Large costs arise from

dense sampling schemes, which account for a substantial part of the

total mapping costs. Consequently, practitioners tend to decrease
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the number of samples collected, which impairs the accuracy
of soil maps.

An alternative to overcome the time and budget constraints
associated with adequate sampling densities for soil mapping
is the use of visible and near infrared (vis–NIR) spectroscopy.
This technique has garnered wide interest during the past two
decades in soil assessment studies (Kopačková & Ben-Dor, 2016)
and its benefits have been documented extensively. It enables the
quantification of several important properties of soil samples from
their vis–NIR spectral responses in a cheaper and faster way than
by conventional laboratory methods. For this reason, vis–NIR
spectroscopy enables soil surveyors to increase sampling densities
without incurring substantial additional costs, and provides the
potential for fine-resolution soil monitoring (Wetterlind et al., 2008;
Ramirez-Lopez et al., 2014). For a detailed review on the relation
between soil vis–NIR light absorbance and soil properties, refer to
Stenberg et al. (2010).

The research efforts on soil vis–NIR spectroscopy have resulted
in the development of many soil vis–NIR databases (i.e. spectral
libraries) for the quantification of soil properties at farm (Guerrero
et al., 2016), regional (Gogé et al., 2012) or global scales (Viscarra
Rossel et al., 2016a). These studies have shown that the inaccuracy
of soil vis–NIR models tends to increase when the geographical
scale at which they are calibrated also increases (Ramirez-Lopez
et al., 2013). This inaccuracy is largely determined by how variable
the soil is and the environmental conditions covered by the calibra-
tion samples (Peng et al., 2013).

One may want to derive digital soil maps based on the soil
properties available at sampling locations (i.e. derived either from
laboratory analysis or vis–NIR spectroscopy). At the continental
scale, Viscarra Rossel et al. (2015) produced three-dimensional
maps of soil properties for Australia by combining legacy soil
data and vis–NIR information. At a smaller regional scale, Peng
et al. (2015) combined laboratory and remotely sensed vis–NIR
spectra to model topsoil organic carbon. Both authors showed that
augmenting the laboratory measurements with vis–NIR-predicted
data considerably improved the accuracy of soil maps, even though
the predictions of soil properties with the latter remain less accurate
than conventional laboratory analysis (Viscarra Rossel & Webster,
2012). For farm-scale soil mapping, vis–NIR spectroscopy has
been successfully applied in situ and in the laboratory to obtain
spatially dense soil data (Table 1). For example, Brodský et al.
(2013) used soil vis–NIR spectra recorded in the laboratory to
predict the topsoil organic carbon content of 579 samples over an
area of 100 ha (Table 1).

Farm-scale soil mapping with vis–NIR-augmented data (i.e. lab-
oratory data coupled with spectroscopic predictions) has been car-
ried out by spatial interpolation, predominantly kriging (Table 1).
Kriging requires an experimental variogram, and to compute this
the underlying random variable should be approximately normally
distributed. In practice, however, soil data are often skewed (Lark
& Lapworth, 2012) and might also contain outliers. Robust var-
iogram estimation can prevent outliers from having an adverse
effect on the experimental or sample variogram and therefore the

model parameters (see Nussbaum et al., 2014). Outliers are less
likely to occur in the vis–NIR-predicted soil properties than in
conventionally measured properties because vis–NIR predictions
tend to smooth the variation. However, vis–NIR models can be
inaccurate, for example if they are predicting a soil property using
spectra from an unknown soil. Such predictions could be considered
outliers. In addition, vis–NIR-augmented datasets might also con-
tain outliers because they include laboratory measurements. In-situ
vis–NIR measurements are also prone to produce predictions that
contain outliers because of variation introduced by less stable con-
ditions for data acquisition and lack of sample preparation prior to
the spectral measurements (e.g. samples are not dried or sieved).
Despite these effects, the use of robust geostatistics has been dis-
regarded for farm-scale soil mapping with vis–NIR augmented
datasets.

Recently, Somarathna et al. (2018) stressed the importance
of accounting for the propagation of uncertainty with vis–NIR
models through spatial models. Error propagation is frequently
ignored in soil mapping with vis–NIR-augmented data, which
might affect the assessment of mapping accuracy. In our review
of the literature for farm-scale soil mapping with vis–NIR data
(which spanned the last 10 years) only two of the papers we cite
applied error propagation analysis of the vis–NIR model (Table 1).
The first, by Brodský et al. (2013), studied how the uncertainty of
predictive vis–NIR models of soil organic carbon (SOC) calibrated
with different sample sizes affected the accuracy of mapping the
soil property. The second, by Viscarra Rossel et al. (2016b), used
vis–NIR for mapping SOC by kriging with external drift and a
novel approach to account for the uncertainty propagated from the
vis–NIR models to the spatial modelling.

When sampling for calibrating vis–NIR models for farm-scale
mapping, several methods are commonly used, such as
Kennard–Stone, (Kennard & Stone, 1969), conditioned Latin
hypercube (Minasny & McBratney, 2006) and k-means (Næs,
1987). However, choice of the size of vis–NIR calibration datasets
is often arbitrary (Table 1). Vis–NIR models derived from cali-
bration sets with insufficient samples to represent soil variation
adequately in the field might lead to poor ability to generalize,
which will reduce mapping accuracy. Therefore, optimization of
sample size for vis–NIR calibrations should also be taken into
account for farm-scale mapping in relation to both budget and
mapping accuracy.

Given that some of the key aspects suggested above have been
neglected previously in vis–NIR spectroscopy for farm-scale soil
mapping, our study aimed to (i) optimize the use of vis–NIR
spectroscopy at the farm scale to predict soil properties robustly,
(ii) demonstrate the utility of vis–NIR data for soil mapping at
the farm scale in a potential application scenario and (iii) compare
maps based on conventional laboratory analysis with those using a
vis–NIR-augmented dataset, while accounting for the propagated
prediction error of the spectroscopic model. In the spirit of repro-
ducible research, we make all the data and the computational code
used for carrying out the analyses presented in this study publicly
available.
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Table 1 List of relevant published work on farm-scale soil mapping using either vis–NIR or NIR spectroscopy

Authors
Spectral data
collection

Spectral
range / nm

Soil
propertiesa

Calibration
samples

Predicted
samples

Optimized
number of
calibration
samples

Mapped
area / ha

Spatial
interpolation
methodb

Error
propagation
analysis

Wetterlind et al.

(2008)
Laboratory 450–2500 SOM, clay content 50 119 No 97.0 Kriging No

Muñoz &
Kravchenko
(2011)

In situ 1110–2225 SOC 100 5819 No 24.0 Kriging No

Brodský et al.
(2013)

Laboratory 350–2500 SOC 152 579 No 100.0 Kriging Yes

Kodaira &
Shibusawa (2013)

In situ 350–1700 M, SOM, pH, EC,
CEC, TC, HN, AN,
TN, NN, P

144 1574 No 8.9 IDW No

Schirrmann et al.

(2013)
In situ 1100–2225 P, K, Mg, SOM, N,

pH
216 > 5000 No 64.0 Kriging No

Shen et al. (2013) In situ 920–1718 TC, clay content 64 3700 No 50.0 Kriging No
Debaene et al.

(2014)
Laboratory 400–2200 SOC, pH 79 319 Yes 53.6 NN No

Baharom et al.

(2015)
In situ 350–1700 M, SOM, TC, TN,

HN, P
53 912 No 0.1 IDW No

Camargo et al.
(2015)

Laboratory 380–2300 Clay content, Fe
oxides, adsorbed
phosphate

100 206 No 500.0 Kriging No

Conforti et al.
(2015)

Laboratory 350–2500 Particle size
distribution

175 235 No 33.2 Kriging No

Knadel et al. (2015) In situ 350–2200 SOC, particle size
distribution

30 1471 No 26.4 Kriging No

Mouazen & Kuang
(2016)

In situ 305–2000 P 383 21 No 22.0 Kriging No

Priori et al. (2016) Laboratory 450–2450 Surface C stock 85 176 No 26.0 GWMR No
Sun & Zhang (2017) Laboratory 400–2400 Zn 46 28 No 16.0 Kriging No

aSoil properties.
AN, ammonium N; CEC, cation exchange capacity; EC, electrical conductivity; HN, hot water-extractable N; M, moisture content; NN, nitrate N; SOC, soil
organic C; SOM, soil organic matter; TC, total C; TN, total N.
bMethods of spatial interpolation.
Zn: zinc; IDW, inverse-distance weighting; NN, nearest neighbour; GWMR, geographically weighted multiple regression.

Materials and methods

Study area

The study area near the municipality of Barra Bonita in the state
of São Paulo (Brazil) covers 473 ha at altitudes ranging from 550
to 710 m above sea level. There is part of a small catchment that
runs from northeast to southwest in which sandstones dominate,
but basaltic flows also occur to a lesser extent. The predominant
soil types are classified as Typic Quartzipsamment (TQ), Typic
Hapludox (TH), Typic Hapludalf (THa), Typic Hapludult (Thu)
and Typic Eutrudept (TE).

Soil sampling and laboratory analysis

We collected samples at 458 sites on a regular grid of 100 m× 100 m
at two depths (l= {A: 0–0 0.2 m with 458 samples; B: 0.8–1.0 m
with 452 samples}), representing a total of 910 georeferenced

samples (Figure 1). The sampling design was not initially intended
for geostatistical mapping; therefore, this grid might not account for
spatial dependence over short distances.

Our study focused on particle-size fractions (i.e. sand, silt and
clay contents) and exchangeable calcium content (Ca++). The deter-
mination of particle-size fractions was by the hydrometer method,
in which sodium hydroxide (4 g l−1) and sodium hexametaphos-
phate (10 g l−1) were used as dispersing agents. Soil property Ca++

was extracted by KCl 1 mol l−1 solution and quantified by atomic
absorption spectrophotometry.

Acquisition and pre-processing of the vis–NIR spectra

For the spectral measurements, the samples were oven-dried
for 24 hours at 45∘C, ground and sieved (2 mm mesh). Following
that, an infra-red intelligent spectroradiometer (IRIS) sensor
(Geophysical and Environmental Research Corporation, 1996,
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Figure 1 Study area showing the locations of
samples used for validation and the candidate
samples for calibration.

New-York, United-States) was used to measure the vis–NIR
reflectance spectrum of each sample. The data were obtained at a
resolution of 2 nm between 350 and 1000 nm, and at a resolution
of 4 nm between 1000 and 2500 nm.

We used the R package prospectr (Stevens & Ramirez-Lopez,
2013) implemented in R 3.3.2 (R Core Team, 2013) for the
preprocessing of the spectral data. The vis–NIR reflectance spectra
were transformed to apparent absorbance (log 1/reflectance; the
logarithm is natural throughout). To improve the signal-to-noise
ratio we applied the Savitzky–Golay filter and resampled the
spectra to a resolution of 6 nm. The spectral ranges with very
small signal-to-noise ratio (corresponding to the ranges between
400–500 nm and 2340–2500 nm) were removed from the spectra.
Multiplicative interference and light scattering effects were reduced
by normalizing the spectra using the standard normal variate (SNV)
algorithm (Barnes et al., 1989).

Selection of calibration and validation sets

Validation samples. A total of 115 sampling locations were ran-
domly selected for validation. Observations from both depths (sur-
face and subsurface, comprising 227 samples) were used for val-
idation; subsurface samples were not available in three cases. All
remaining samples (910–227= 683 samples) were used for calibra-
tion. The locations of the validation samples are shown in Figure 1.

Calibration samples. The optimal number of samples to cali-
brate the vis–NIR models was based on the method proposed
by Ramirez-Lopez et al. (2014) as follows.

1 The vis–NIR spectra were projected on to the principal com-
ponents (PCs) space. The PCs were derived with the singular
value decomposition algorithm using the R package resemble

(Ramirez-Lopez & Stevens, 2016).
2 Subsets of different sizes were sampled within the set of possible

calibration samples. We started from ten and went to 400 samples

in steps of ten. Each subset was sampled using the conditioned
Latin hypercube (cLH) algorithm (Minasny & McBratney, 2006)
from the PCs of the vis–NIR data. For the cLH sampling we used
the R package clhs (Roudier, 2011).

3 For each calibration subset we computed the mean squared
Euclidean distance (msd) between estimates of the probability
density functions (pdfs) of the whole set of samples and the pdfs
of samples in the subset. The msd was computed for the PCs of
the vis–NIR data as follows:

msd = 1
k

k∑
j=1

(
KDExj

− KDExj∈cs

)2
, (1)

where k is the number of PCs, KDExj∈csrepresents a vector of
kernel density estimates for the probability density function of the
jth PC of the subset of samples cs and KDExj

represents a vector
of kernel density estimates for the probability density function of
the jth PC for the whole population. The estimates corresponding
to both the KDExj

and the KDExj∈cs were computed for the same
values within the ranges of values of the PCj and using the same
bandwidth and Gaussian kernel. The optimal calibration set size
was indicated by a substantial reduction in the msd, and when
there was no further change by including more samples; that
is, the KDExj∈cs (kernel density estimates of selected subset of
samples) was similar to the KDExj

(kernel density estimates of the
whole set of candidate samples for calibration). This was decided
visually by plotting the size of the calibration sample set against the
averaged msd.

To obtain reliable estimates of msd as a function of the sample set
size, steps 1–2 were repeated ten times and the final msd considered
was the average of those obtained during all iterations. Once the
optimal set size was identified, we sampled the final calibration set
using the cLH algorithm. For this, we sampled ten different sets with
the suggested optimal size and selected the one with the minimum
msd as the final calibration set.

© 2018 The Authors. European Journal of Soil Science published by John Wiley & Sons Ltd on behalf of British Society of Soil Science
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Transformation of the particle-size data

Sand, silt and clay contents are reported as proportions that
sum to 100%. However, models formulated for each of these
fractions do not guarantee that their individual predictions sum
to 100%. To avoid this compositional constraint, the particle-size
data (V = {clay, silt, sand}) for both depths (l= {A : 0–0.2 m,
B : 0.8–1.0 m}) were transformed using the additive log-ratio (alr)
transformation (Odeh et al., 2003), applied as follows:

Yl,i = ln

(
Vl,i

Vl,r

)
∀ i = 1, 2, … (r − 1) ∀l ∈ (A,B) , (2)

where Yl, i is the resulting transformed variable, Vl, i is the ith vari-
able of the set of compositional variables (silt and clay contents) at
depth l, Vl, r designates a reference compositional variable at depth
l and r is the total number of compositional variables. In this study,
we used the sand content as reference (Vl, r). Back-transformations
of the alr-transformed variables for the vis–NIR predictions and
spatial predictions are explained in their respective sections.

Vis–NIR modelling and predictions

A prediction model based on vis–NIR spectra was fitted for each
soil property using the selected optimal calibration subset. Each
model was developed using a memory-based learning (MBL)
algorithm. That is, for each new sample (requiring prediction
of a given soil property), a local model is calibrated using only
the most similar samples (nearest neighbours) in the calibration
set. They were selected based on the similarity or dissimilarity
among the spectra. Although MBL is commonly used to model
large and complex vis–NIR datasets (e.g. Clairotte et al., 2016), it
can also be used for modelling small vis–NIR datasets. In this case,
rather than overcoming the typical complexity of large vis–NIR
datasets, the MBL algorithm was used to optimize the prediction
of each sample by removing calibration samples that were far from
the prediction sample in the vis–NIR space. These distant samples
can be considered as outliers, which might affect the accuracy of
prediction. In other words, this modelling technique can be seen as
a collection of local regressions with the removal of outliers. The
basic aspects of the MBL algorithm for calibration and prediction
with the removal of outliers are given below.

1 A similarity or dissimilarity metric was created to select the near-
est neighbours (excluding possible outliers) for each sample we
wished to predict. This consisted of projecting the spectra on
to the partial least squares (PLS) space and then computing the
Mahalanobis distance between samples. We used an optimized
selection of components based on a nearest-neighbour approach
(see Ramirez-Lopez et al., 2013, section 2.12, for more informa-
tion).

2 We defined the number of neighbours to select (or the number of
local outliers to remove). Different threshold distances (from 0.3
to 1.5 in steps of 0.05) were tested to remove possible outliers. We
conditioned outlier removal to ensure a minimum of 120 samples

(out of 180 samples) in the local calibration set. In fact, this
number must be small compared with the total number of samples
in the calibration set so that one would not expect outliers to be
included in the analysis. From this point, we no longer used the
dissimilarity information.

3 The nearest selected observations were used to fit local linear
models by the weighted average PLS regression method. This is
a case of ensemble modelling where the final predictions are a
weighted average of the predictions generated by multiple (and
consecutive) PLS components. The weight for each component
(wj) is calculated as follows:

wj =
(
s1∶j × gj

)−1
, (3)

where s1 : j is the root mean square of the spectral residuals for
unknown samples when a total of j PLS components is used and gj

is the root mean square of the regression coefficients corresponding
to the jth PLS component. We averaged the predictions retrieved by
16 PLS models (ranging from 5 to 20 PLS components).

The MBL modelling was implemented using the R package
resemble (Ramirez-Lopez & Stevens, 2016). Nearest neighbour
cross-validation (Ramirez-Lopez & Stevens, 2016) was used to
optimize the threshold distance (for neighbour selection) by min-
imizing the standardized root mean squared error (sRMSE) of the
cross-validation, which was computed as follows:

sRMSE =

√
1

n

∑n
i=1

(
yi − ŷi

)2

max (y) − min (y)
, (4)

where ŷi is the predicted value and n is the number of validation
samples.

Prediction using the vis–NIR models. After optimization,
the MBL algorithm was applied to the validation set to predict
the soil properties. To report these results for the particle-size
distribution, we back-transformed the additive log-ratio trans-
formed variables to the original clay, silt and sand content. These
back-transformations were based on the following equations:

V̂l,i = 100 ×
exp

(
Ŷl,i

)
1 +

∑r−1
i=1 exp

(
Ŷl,i

) ∀i = 1, … , (r − 1) ∀l ∈ (A,B)

(5)
and

V̂l,r = 100
1

1 +
∑r−1

i=1 exp
(

Ŷl,i

) . (6)

The predicted back-transformed values V̂l,i, V̂l,r and Ca++ were
compared with reference values (obtained from conventional
wet-chemical analysis) using the root mean squared error (RMSE)
and the coefficient of determination (R2). The bias was assessed by
the mean error (ME).

Finally, MBL was used to predict the soil properties of the
samples that were not included in the validation set (227 samples)
or in the final calibration subset (180 samples). For each soil
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property and for each depth, we pooled the reference laboratory
values (i.e. the values of the samples in the calibration set) and the
vis–NIR predicted values (i.e. the values of the samples outside the
calibration and validation sets). Hereafter, we refer to this resulting
dataset as vis–NIR augmented dataset.

Spectroscopic model error. We note that our spectroscopic predic-
tions are not error free (Somarathna et al., 2018). Viscarra Rossel
et al. (2016b) indicated two possible sources of error. The first is the
spectroscopic sampling error (i.e. the spectra are measured at only
two discrete depths in the soil profile). The second is the uncer-
tainty introduced by using the spectroscopic model. The former is
accounted for in the spatial modelling step by the nugget variance
of the variogram, whereas the latter needs to be quantified explic-
itly because it is propagated through spatial prediction. We followed
the approach introduced by Viscarra Rossel et al. (2016b) and esti-
mated the average error of spectroscopic prediction by taking the
variance of the residuals between the reference value yi and the
predicted value ŷi for i= 1, … , n samples, and for each depth l.
We further checked for spatial dependence of the prediction errors
of the vis–NIR models. The variance of these predictions, denoted
hereafter by var

(
𝜀yl

)
= var

(∑n
i=1

(
yi − ŷi

))
, was propagated to the

spatial analysis in the next section.

Spatial modelling of the vis–NIR augmented data

Spatial modelling. Soil property Y: Ca++ and alr-transformed
particle-size fractions at a depth l= {A : 0 – 0.2 m, B : 0.8 – 1.0 m}
at location s in the study area 𝒜are defined as:

Yl = 𝜇l + Zl (s) + 𝜀l (s) , (7)

where 𝜇l is a (constant) mean and Zl(s) is a normally dis-
tributed, autocorrelated Gaussian random field with zero mean and
unit variance. If the correlation function 𝛾 l between Zl(si) and
Zl(si

′
) becomes smaller as the lag distance h between si and si

′

increases, then Zl(s) is spatially structured. Finally, 𝜀l accounts for
an uncorrelated random error with possibly a long-tailed distribu-
tion. Isotropic models can be fitted to the experimental variogram,
such as exponential or spherical functions.

Spherical function:

𝛾l (h) =

⎧⎪⎪⎨⎪⎪⎩
𝜏l + 𝜎l

{
3h

2𝛼l
+ 1

2

(
h

𝛼l

)3
}

for h ≤ 𝛼l,

𝜏l + 𝜎l for h > 𝛼l,

0 for h = 0,

(8)

where 𝜏 is the nugget variance, which represents the spatially
uncorrelated variation at distances less than the sampling interval
and measurement error, and 𝛼 is the range of spatial dependence or
spatial autocorrelation.

Exponential function:

𝛾l (h) = 𝜎l

(
1 − exp

(
− h
𝛼l

))
, (9)

where 𝛾(h) is the semivariance at lag h, 𝜎 is the a priori variance
of the autocorrelated process and 𝛼 is a distance parameter for this
function. The exponential model approaches its sill gradually and
also asymptotically so that it does not have a finite range. In practice,
an effective range is assigned as the distance at which the function
has reached 95% of 𝜎. The effective range, 𝛼, is 3𝛼.

Note that Zl is correlated in space whereas Zl and Zl′ are
uncorrelated if l≠ l

′
. The parameters of the autocorrelation

model 𝜽l = (𝜎l, 𝛼l, 𝜏 l) , the mean 𝜇l and the realizations of
the Gaussian field ZT

l =
(
Zl

(
si

)
, … ,Zl

(
sp

))
at p locations

si

(
i = 1, … , p; si ∈ 𝒜

)
are unknown and must be estimated from

the data. We propagated the prediction error of the spectroscopic
model by adding the estimated variance var

(
𝜀yl

)
to the diagonal

of the covariance matrix 𝚪l of Zl (as in Knotters et al., 1995)
corresponding to the sampling locations where the soil property
was derived by spectroscopy.

Spatial model parameter estimation. Model parameters were
estimated using a robust version of the residual maximum like-
lihood (rREML) method first developed by Künsch et al. (2013).
In rREML, variogram and spatial trend parameters are estimated
simultaneously. This method particularly suits data that possibly
contain outliers. The robustness of rREML parameter estimation is
controlled by a tuning constant c, which accounts for the weights
given to the outliers in the observations when estimating 𝜇l and 𝜃l.
We set this value to two based on expert knowledge and similar pre-
vious research (e.g. Nussbaum et al., 2014), which is equivalent to
providing a moderate robustness to parameter estimates.

Predictions and validation. Once the parameters had been esti-
mated, it was possible to predict the soil properties at new, unob-
served locations by kriging (Cressie, 2006):

Ỹ ′
l (s) = 𝜇l + 𝜸l,�̂� (s)

T 𝚪−1

l,�̂�
Ẑl,�̂�, (10)

where 𝜇l is the mean estimated by rREML, 𝜸l,�̂� (s) and 𝚪l,�̂� are a
vector with the covariances between Zl and Zl(s), and covariance
matrix of Zl, respectively. They were estimated using the param-
eter vector �̂�l. Predictions were made by global block kriging on
10 m ×10 m blocks.

To back-transform the alr-predicted values to the original
clay, silt and sand contents, we used the standard unbiased
back-transformation for lognormal kriging, computed as follows
(Cressie, 2006):

Ṽl,i = 100
exp

(
Ỹl,i (s) +

1

2

{
𝜏2

l,i + 𝜎2
l,i − var

[
Ỹl,i (s)

]})
1 +

∑r−1
i=1 exp

(
Ỹl,i (s) +

1

2

{
𝜏2

l,i + 𝜎2
l,i − var

[
Ỹl,i (s)

]})
∀ i = 1, … , (r − 1) ∀l ∈ (A,B) , (11)

and

Ṽl,r = 100
1

1 +
∑r−1

i=1 exp
(

Ỹl,i (s) +
1

2

{
𝜏2

l,i + 𝜎2
l,i − var

[
Ỹl,i (s)

]}) ,
(12)
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Table 2 Summary statistics of the soil properties

Soil property Minimum First quantile Median Third quantile Maximum Mean Standard deviation

Depth A (0–0.2 m)
Sand content / % 11.0 73.3 80.0 84.0 94.0 72.4 20.0
Silt content / % 2.0 2.0 4.0 6.0 30.0 6.0 5.2
Clay content / % 4.0 12.0 16.0 22.0 71.0 21.6 15.3
Ca++ / mmolc kg−1 3.0 9.0 13.0 20.0 97.0 17.4 14.4

Depth B (0.8–1.0 m)
Sand content / % 6.0 66.0 76.0 80.0 96.0 67.7 20.6
Silt content / % 2.0 2.0 2.0 4.0 28.0 4.3 4.3
Clay content / % 2.0 18.0 20.0 30.0 81.0 28.0 17.3
Ca++ / mmolc kg−1 1.0 2.0 6.0 16.0 81.0 11.3 13.4

where var
[
Ỹl,i (s)

]
is defined by Nussbaum et al. (2014,

Equation 16):

var
[
Ỹl,i (s)

]
=
(
𝜸l,i,�̂� (s)

T 𝚪−1

l,i,�̂�
, 1
)

× cov

[(
Ẑl,i,�̂�

𝜇l,i,�̂�

)
,
(

ẐT

l,i,�̂�
, 𝜇T

l,i,�̂�

) ](
𝚪−1

l,i,�̂�
𝜸l,i,�̂� (s)
1

)
. (13)

The RMSE, R2 and ME were used to assess the accuracy
and the bias of the prediction at validation locations for the
back-transformed clay, silt, sand and the predicted Ca++.

Geostatistical models corresponding to each soil property were
also derived using only the reference laboratory data, and validated
using the 115 locations described above (227 samples). Geostatis-
tical analyses were carried out using the georob package (Papritz,
2017) implemented in R 3.3.2. For comparison, we also calibrated

a geostatistical model in which the estimate of REML parameters
was not robust, denoted standard REML hereafter.

Results

Soil properties and vis–NIR spectra

Table 2 presents the summary statistics for the observations. All soil
properties have a large standard deviation except for silt. Because
the area is dominated by highly weathered soils developed from
sandstones, most of the samples have large sand contents at both
depths. This explains the small variation in silt content of this area
(standard deviation ≤ 5.2).

The doublet absorption feature observed in the vis–NIR spectra
near 2200 nm in Figure 2 indicates the presence of kaolinite in
the sampled soils (Demattê et al., 2006). In addition, the spectra
exhibit absorption features centred at 550 and 850 nm, characteristic

Depth A (0−0.2 m) Depth B (0.8−1.0 m)
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Figure 2 Preprocessed vis–NIR spectra of all samples used for model calibration.
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Table 3 Correlation matrix of observed soil properties and mean vis–NIR absorbance of the vis–NIR variables

Sand content Silt content Clay content Ca++ log(silt/sand) log(clay/sand) Mean absorbance

Sand content 1.00 −0.82 −0.99 −0.70 −0.82 −0.85 −0.80
Silt content −0.82 1.00 0.72 0.71 0.84 0.68 0.66
Clay content −0.99 0.72 1.00 0.66 0.77 0.85 0.79
Ca++ −0.70 0.71 0.66 1.00 0.61 0.56 0.62
log(silt/sand) −0.82 0.84 0.77 0.61 1.00 0.92 0.63
log(clay/sand) −0.85 0.68 0.85 0.56 0.92 1.00 0.65
Mean absorbance −0.80 0.66 0.79 0.62 0.63 0.65 1.00

of iron-bearing minerals such as goethite and haematite (Stenberg
et al., 2010). Samples corresponding to Typic Quartzipsamment
have a higher albedo (i.e. overall reflectance) than soil samples of
other classes because of their larger sand contents.

Table 3 gives the Pearson correlation coefficients between soil
properties and the average vis–NIR absorbance. Overall, there is a
strong absolute correlation between soil properties and soil albedo
(correlations always larger than 0.6). The large absolute correlation
of mean absorbance with the clay and sand contents (around
0.8) suggests that soil particle-size fractions were an important
factor affecting the overall absorbance intensity. Relatively large
correlations between Ca++ and clay and sand content indicate that
this attribute was to some extent correlated with the particle-size
fractions; therefore, the relation between Ca++ content and spectral
information might have depended partially on indirect correlation.

Optimal calibration set size

The first five PCs accounted for 98% of the spectral varia-
tion and were selected to infer the optimal calibration set size.
Figure 3 shows the mean squared Euclidean distance (msd) values
corresponding to comparisons between estimates of the probability
density functions (pdfs) of the whole set and pdfs of the samples in
the different calibration sets. The msd values decreased as the size

0.000

0.002

0.004

0.006

0 100 200 300 400

Calibration set size

m
sd

Figure 3 The msd computed for the different calibration dataset sizes.

of the sample set increased. Despite this, the differences between
the calibration sets in terms of their msds were marginal beyond
180 samples. Therefore, we used this number of samples as the
optimal size for calibration of the vis–NIR models of the target
soil properties.

Performance of the MBL modelling

The vis–NIR models of the additive log-ratio (alr) transfor-
mations of particle-size fractions formulated with the final
calibration set (180 samples) gave good predictive performance
for the back-transformed sand, silt and clay contents (Table 4).
Back-transformed predictions for sand and clay contents have a
large R2 of 0.88 and 0.87, respectively. This confirms that the
spectral variation described in the previous section relates to the
particle-size fractions. Accuracy was least for the model of Ca++

(R2 of about 0.6), indicating that predictions for this attribute might
have depended on its indirect relation with the soil spectra. The ME
values show that predictions by the vis–NIR models are slightly
positively (sand and silt) or negatively (clay and Ca++) biased.

During calibration, only one prediction sample (out of the 503)
required removal of an outlier before creating the log(silt/sand)
model. Therefore, a global vis–NIR model was almost appropri-
ate for predicting this attribute considering the dataset used. Con-
versely, all the samples in the prediction set required local outlier
removal for the estimation of log(clay/sand) and Ca++.

Spatial analysis

The fitted variogram models for both datasets (i.e. laboratory
based and vis–NIR augmented) show strong spatial dependence

Table 4 Results of the validation of the predictive vis–NIR models (with
180 samples) in the validation set (n= 227). The results for the particle-size
fractions are presented after back-transformation of log(silt/sand) and
log(clay/sand).

Soil property R2 RMSE ME

Sand content 0.88 7.20% 0.65%
Silt content 0.77 2.85% 0.82%
Clay content 0.87 6.31% −1.5%
Ca++ 0.59 8.81 mmolc kg−1 −2.14 mmolc kg−1

RMSE, root mean squared error; ME, mean error.
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Figure 4 Sample and fitted variograms for variables at soil depth A (0–0.2 m) with their associated parameters: (a) log(silt/sand) fitted with exponential
variogram, (b) log(silt/sand) fitted with spherical variogram, (c) log(clay/sand) fitted with spherical variogram, (d) log(clay/sand) fitted with exponential
variogram, (e) Ca++ fitted with spherical variogram and (f) Ca++ fitted with spherical variogram. Parameter 𝜏 is the nugget variance, 𝜎 is the variance and 𝛼 is
the range.

in all cases (Figures 4 and 5). However, the sill variances of
both laboratory-based and vis–NIR-augmented fitted variograms
indicate considerable variation in the soil properties. In most cases,
the sill of the vis–NIR-augmented variograms is larger than that
estimated for the laboratory-based variograms. There are clear
differences between the variogram parameters estimated for depths
A and B, for example in their (effective) ranges, which differ
considerably in some cases (e.g. range of log(silt/sand) for depth
A was 812 m, whereas for depth B it was 423 m). This suggests
smoothing of the topsoil variation compared with that of the
subsoil.

The errors of the vis–NIR predictions were spatially independent,
which was confirmed by plots of the sample variograms of the
prediction errors of the spectroscopic model (not shown). For

each soil depth, the variance of the propagated error from the
vis–NIR prediction is presented in Table 5. The contribution of
model error to the total error from spectroscopic modelling is
moderate. When compared with the spectroscopic sampling error
(nugget variance, given in Figures 4 and 5), the spectroscopic model
error represents between 20% (log(clay/sand), depth A) and about
50% (log(clay/sand), depth B) of the total spectroscopic error.

The robust model calibration provided a weight < 0.8 for several
observations (Table 6). This means that there were potential outliers
in the observations used for the geostatistical model calibration.
There were more potential outliers at depth B than A. With the
exception of Ca++ at depth B, the vis–NIR-augmented dataset
was more prone to outliers than the laboratory-based one because
of inherent uncertainty of the vis–NIR models (Table 6). This
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Figure 5 Sample and fitted variograms for the soil depth B (0.8–1.0 m) with their associated parameters: (a) log(silt/sand) fitted with exponential variogram,
(b) log(silt/sand) fitted with exponential variogram, (c) log(clay/sand) fitted with exponential variogram, (d) log(clay/sand) fitted with exponential variogram,
(e) Ca++ fitted with spherical variogram and (f) Ca++ fitted with spherical variogram. Parameter 𝜏 is the nugget variance, 𝜎 is the variance and 𝛼 is the range.

indicates the need for more robust geostatistical methods when
vis–NIR augmented datasets are used.

The spatial predictions using only the results of laboratory
analysis outperformed those using the vis–NIR-augmented dataset
(Table 7). Particle-size fractions were, in general, well predicted.
The R2 for Ca++ was relatively small compared with that for the rest
of the predicted soil properties, and was predicted more accurately
at depth B than A.

The ME values reported in Table 7 show that the spatial pre-
dictions were always slightly positively or negatively biased. The
bias was more important in B than in A, and more pronounced in
the vis–NIR-augmented predictions than in the laboratory-based
ones. For the vis–NIR-augmented spatial prediction in B, sand con-
tent was considerably overestimated (ME=−4.75), whereas clay
and Ca++ contents were underestimated (ME of 5.05 and 2.41,

respectively). However, when compared with the relatively larger
RMSE values, the ME shows that inaccuracy of the spatial predic-
tions was mainly a result of their imprecision rather than a result of
their bias (Viscarra Rossel et al., 2016b).

Comparison of the prediction results when using a robust model
with the standard REML parameter estimates showed that there was
a small increase only in prediction accuracy when using the robust
REML (Table 7).

Figures 6–8 and 9 show the spatial predictions of sand, silt, clay
and Ca++, respectively. In all cases, the maps produced by both
methods were similar with relatively small absolute differences.
The largest absolute differences between maps are in the southwest
part of the study area, where the altitudes are lowest. This is
mainly because of the different parent material (basaltic rocks)
from which soils in this area have developed. Performance of both
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Table 5 Variance of the propagated spectroscopic model error derived from
the vis–NIR predictions

Property Variance

Depth A (0−0.2 m)
log(clay/sand) 0.27
log(silt/sand) 0.49
Ca++ 81.0

Depth B (0.8–1.0 m)
log(clay/sand) 1.08
log(silt/sand) 0.64
Ca++ 64.53

Table 6 Number of observations with a weight less than 0.8 during the
robust REML parameter estimation

Property Laboratory-based Vis−NIR augmented

Depth A (0–0.2 m)
log(silt/sand) 5 9
log(clay/sand) 8 10
Ca++ 7 12

Depth B (0.8–1.0 m)
log(silt/sand) 11 11
log(clay/sand) 13 14
Ca++ 17 15

vis–NIR and conventional spatial models tends to fail in this area
because of the lack of sample representation on soils derived from
basaltic rocks. For example, the vis–NIR-augmented maps of sand
show smaller contents than the laboratory-based map (Figure 6).
A different pattern is evident for silt, clay and Ca++ (Figures 7, 8
and 9, respectively). Note that the maps predicted with the vis–NIR
augmented dataset are smoother than those predicted with the
laboratory-based dataset. This was expected and is explained in the
discussion.

Discussion

By using the proposed methodology, we reduced the number
of samples to be analysed by conventional methods by 74%. This
percentage excluded the validation samples. Together with the
reduction in number of calibration samples, there should be an
equivalent reduction in chemical reagents needed for soil analysis,
mitigating the environmental effects of soil survey. Also, one soil
sample needs at least 3 days to pass through a complete conventional
analysis, whereas spectroscopic measurements can be recorded in a
few minutes and it is possible to obtain information from several
soil features with a single reading. The above result indicates that
the mapping costs could be substantially reduced with vis–NIR
spectroscopy as a complementary technique to conventional soil
analysis, as observed by Wetterlind & Stenberg (2010), Debaene
et al. (2014) and Ramirez-Lopez et al. (2014).

Statistical selection of the optimal vis–NIR calibration set is
not new. Our results confirm the conclusion drawn by Debaene Ta
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Figure 6 Maps of percentage of sand content generated from the laboratory-based and vis–NIR-augmented datasets. The right-hand maps show the differences
between them.
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Figure 7 Maps of percentage of silt content generated from the laboratory-based and vis–NIR-augmented datasets. The right-hand maps show the differences
between them.

et al. (2014). The authors used the k-means algorithm to show
that the number of calibration samples can be reduced by a factor
of five, without substantial loss of prediction accuracy. In this
study we used the mean squared Euclidian distance between a
subset of sample pdf and the whole calibration sample set pdf to
choose the optimal calibration set size. This is similar to selecting
a few representative spectra from the whole calibration dataset.

The method developed by Ramirez-Lopez et al. (2014) has not
been tested at the farm scale over different parent materials. We
recognize that the present study is somewhat site specific. However,
the method of Ramirez-Lopez et al. (2014) supports the conclusion
of Lucà et al. (2017). The authors stressed that a vis–NIR model
must incorporate spectral data from contrasting environmental
characteristics to be robust. We therefore believe that the present
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Laboratory based vis−NIR augmented Differences between maps
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Figure 8 Maps of percentage of clay content generated from the laboratory-based and vis–NIR-augmented datasets. The right-hand maps show the differences
between them.
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Figure 9 Maps of Ca++ content generated from the laboratory-based and vis–NIR-augmented datasets. The right-hand maps show the differences between
them.

methodology would perform equally well for a different case study.
Further work will show if this is effectively the case.

Several authors have suggested that MBL requires large reference
databases (e.g. Gogé et al., 2012; Guerrero et al., 2016) and there
appears to be a consensus that this is one of the main constraints
of this technique. Nevertheless, we have demonstrated that MBL

could be applied successfully even when small (but representative)
reference datasets are available. The goal of MBL in this study
was to (i) select the most similar samples from a local spectral
library to increase the accuracy of the prediction of each sample
and (ii) enable the model to discard potential outliers contained in
the spectral library. When no outliers were identified and the model
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for the target soil property was created with all the samples, the local
model of the MBL algorithm became equivalent to a global model.
Therefore, one may expect that accuracy of the MBL local model
would be at least as good as that of the global model. This supports
the findings of Lobsey et al. (2017), who used a small set of local
samples together with selected samples from a large spectral library
for local predictions.

For our case study, the relatively accurate maps derived with
vis–NIR augmented models suggest that calibration benefits from
the local calibration and outlier removal. In all vis–NIR models
it was necessary to remove at least one observation. This shows
that local spectral libraries can also contain outliers, which can
negatively affect the models’ prediction quality. Local spectral
libraries are generally more effective than large-sized ones in
providing accurate vis–NIR predictions at the local scale (Guerrero
et al., 2016), but they can also contain outliers, which must be
accounted for. Our method is based on the similarity or dissimilarity
among spectra, which performed well at the farm scale.

We propagated the error of the spectroscopic model by spatial
analysis. The variance of the averaged prediction errors of the spec-
troscopic model was relatively large compared to a similar study
by Viscarra Rossel et al. (2016b) and to the spectroscopic sampling
error. The outcome was the generation of soil property maps with
a smooth pattern. This was expected because the prediction at
one sampled location is not the observation itself. The smoothing
increases with the size of the nugget variance, which averages the
overall error. The accuracy of maps produced with the vis–NIR-
augmented data was slightly poorer than that from the laboratory
measurements (Table 7). However, this effect might be cancelled
out by accounting for the standard error in laboratory measurements
of soil properties; the latter was disregarded in our case study.

We also disregarded uncertainty of the variogram parameters,
which might increase the final prediction uncertainty in our case.
This is because we used a regular grid sampling design, which
does not provide information on spatial dependence over short
distances. The nugget variance could possibly be poorly estimated.
A solution would be to include a second-phase survey where a
subset, generally 10% of the total existing sample size, would
be included as close pairs from the existing locations (Lark &
Marchant, 2018). In our case, budget constraints made this solution
impossible to implement.

We advocate that soil management techniques that require
fine-resolution spatial data can benefit considerably from the use of
local vis–NIR spectral libraries. In Brazil, users of precision agri-
culture for soil applications usually collect and analyse from one to
five samples per hectare to develop suitable soil maps. It involves
an investment that, in some cases, might be reduced considerably
by using the present methodology.

Finally, based on this research we suggest a set of steps that could
be useful for soil mapping at the farm scale in areas where prediction
of soil properties based on vis–NIR data will be implemented for
the first time. In a ‘real’ situation, the steps that should ideally be
followed to implement some of the concepts presented in this study
are as follows.

1 Collect a large number of soil samples, if possible, to represent
soil spatial variation within the area to be mapped. A sampling
density of at least one sample per hectare or more should be
used in case no a priori information about the variation in the
area is available. Determination of an ideal number of samples
to collect is not straightforward and the sampling scheme,
which will not be optimal, should include samples at variable
distances so that spatial dependence over short distances can
be determined during geostatistical analysis (Lark & Marchant,
2018). If environmental covariates are available for the area of
interest, they can be used as ancillary information to aid in the
selection of the sampling locations.

2 Measure the vis–NIR spectra of all the samples collected in
step 1.

3 Select a representative optimal subset of samples to calibrate
the soil vis–NIR models. The size of the subset must guarantee
both small prediction errors and reasonable investment in con-
ventional laboratory analyses. This optimal number of samples
can be obtained from a dataset with a size that enables probabil-
ity density functions (pdfs) of the whole dataset to be reproduced
as proposed in Ramirez-Lopez et al. (2014) and also described
and evaluated in the present study.

4 Send the selected calibration samples to the laboratory for
conventional analysis to determine reference values for the soil
properties to be mapped.

5 Use the calibration samples to create vis–NIR models capable
of predicting the soil properties and quantify the uncertainty of
prediction.

6 Use the vis–NIR models to predict the properties for samples that
were not submitted for laboratory analysis. This step should be
carried out for only vis–NIR models with acceptable prediction
accuracy.

7 For each property, the predicted values of the samples not
included in the calibration set and the values determined through
conventional laboratory analysis for the calibration set must be
pooled and the required analyses for mapping the soil property
of interest can then be performed.

Conclusions

We investigated the use of vis–NIR spectroscopy for high-
resolution soil mapping at the farm scale. The main conclusions
were as follows.

• The number of samples used for calibration of the vis–NIR
model can be selected optimally based on their spectral variation.
In our case study, only 26% of the soil samples would be sent to
the laboratory for conventional soil analysis. Despite the small
number of calibration samples, predictive performance of the
vis–NIR models was satisfactory.

• The vis–NIR models fitted to a dataset from a small-scale
spectral library benefitted from a local modelling approach. In
this case, the local models might also be used to exclude potential
outliers.
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• Prediction errors of the spectroscopic model can be easily
propagated by spatial analysis using the kriging equations.

• For our case study, the large prediction error of the spectroscopic
model propagated by kriging resulted in smoothing of the
predictions, without compromising on prediction accuracy.

• Maps produced from the vis–NIR-augmented data were similar
(albeit slightly worse than) to maps produced using only labora-
tory measurements. This is an important result because the costs
incurred in producing the vis–NIR-augmented maps were con-
siderably less than those for laboratory-based maps.
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