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ABSTRACT

Soil erosion by water outlines a major threat to the Three Gorges Reservoir Area in China. A detailed assessment of soil conservation mea-
sures requires a tool that spatially identifies sediment reallocations due to rainfall–runoff events in catchments. We applied EROSION 3D as a
physically based soil erosion and deposition model in a small mountainous catchment. Generally, we aim to provide a methodological frame
that facilitates the model parametrization in a data scarce environment and to identify sediment sources and deposits. We used digital soil
mapping techniques to generate spatially distributed soil property information for parametrization. For model calibration and validation,
we continuously monitored the catchment on rainfall, runoff and sediment yield for a period of 12months. The model performed well for
large events (sediment yield> 1Mg) with an averaged individual model error of 7.5%, while small events showed an average error of
36.2%. We focused on the large events to evaluate reallocation patterns. Erosion occurred in 11.1% of the study area with an average erosion
rate of 49.9Mg ha�1. Erosion mainly occurred on crop rotation areas with a spatial proportion of 69.2% for ‘corn-rapeseed’ and 69.1% for
‘potato-cabbage’. Deposition occurred on 11.0%. Forested areas (9.7%), infrastructure (41.0%), cropland (corn-rapeseed: 13.6%, potato-
cabbage: 11.3%) and grassland (18.4%) were affected by deposition. Because the vast majority of annual sediment yields (80.3%) were as-
sociated to a few large erosive events, the modelling approach provides a useful tool to spatially assess soil erosion control and conservation
measures. Copyright © 2016 John Wiley & Sons, Ltd.
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INTRODUCTION

Soils are the foundation of all terrestrial ecosystems and de-
velop at the intersection of atmosphere, biosphere, hydro-
sphere and lithosphere (Brevik et al., 2015). In this
context, soils inhere ecosystem functions that have direct
impact on human societies (Berendse et al., 2015). Exam-
ples of these soil functions include water purification by fil-
tration, food production by forming a support system for
plants, stabilizing climate change by carbon sequestration
and the provision of a physical basis for human activities
(Keesstra et al., 2012; Goebes et al., 2015). However, soil
erosion and the accompanied loss of topsoil result in soil
quality degradation, and therefore in a declining capacity
of soils to provide the ecosystem functions (Lal, 2003;
Morgan, 2005; Boardman, 2006). This implies reduced crop
productivity and confined water quality due to the realloca-
tion of nutrients and pollutants into the reservoirs (Zhao
et al., 2013; Ferreira et al., 2015; Slimane et al., 2015).
Moreover, sediment depositions in reservoirs result in a de-
clined water storage capacity and a therefore impaired water
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and energy supply (Palazón et al., 2014; Ferreira et al.,
2015; Slimane et al., 2015). The negative impacts of soil
erosion are reinforced when adverse physio-geographic con-
ditions, such as erosion-prone soils, steep sloping terrain and
abundant rainfall, meet inappropriate agricultural practices,
deforestation and construction activities (Onyando et al.,
2005; Park et al., 2011; Wu et al., 2011; Shi et al., 2012;
Schönbrodt-Stitt et al., 2013a). Considering that rates of soil
erosion exceed rates of soil formation by several orders of
magnitude, soil erosion outlines a major threat to ecosystem
sustainability worldwide (Verheijen et al., 2009; Zhao et al.,
2013). Under these circumstances, soil erosion becomes
potentially hazardous for human livelihood and requires
erosion control measures and conservation planning (Shi
et al., 2004; Zhao et al., 2013; Ferreira et al., 2015).
Especially, the Three Gorges Reservoir Area (TGRA) in

China shows high susceptibility to hazardous soil erosion be-
cause of intense anthropogenic activities and unfavourable
environmental conditions (Zhang et al., 2009; Schönbrodt
et al., 2010; Peng et al., 2011; Wu et al., 2011; Kepa Brian
Morgan et al., 2012; Shi et al., 2012; Strehmel et al.,
2015). The TGRA covers an area of 57,802 km2. At the max-
imum pool level of 175m, the reservoir expands approxi-
mately 660 km westwards from Three Gorges Dam (TGD;
Xu et al., 2011). The TGD project outlines the world’s
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largest hydroelectric scheme and was designed to increase
energy supply, control seasonal floods and improve naviga-
tion on the Yangtze river (Zhang & Lou, 2011). Accompa-
nied by the construction of TGD and the impoundment of
the reservoir, 1.3 million people were resettled because of
the inundation of 431 km2 agricultural land and 35 km2 resi-
dential areas (Xu et al., 2011, 2013). About 42% of the
resettlers were moved uphill to previously forested and steep
mountainous sites for small scale crop cultivation (Cai et al.,
2005; Tan & Yao, 2006; Wu et al., 2011; Zhang & Lou,
2011). In total, 96% of the TGRA exhibits mountainous
and hilly terrain with steep slopes (Zhang et al., 2009; Wu
et al., 2011; Fang et al., 2013). It shows a humid subtropical
climate with a unimodal rainfall regime, governed by the
East-Asian monsoon. The long-term average annual precipi-
tation is 1,146mm, of which approximately 70% occurs from
May to September (CMA, 2012). Purple soils and yellow to
yellow-brown soils are dominant in the TGRA and are con-
sidered to be highly vulnerable to soil erosion (Zhang
et al., 2009; Peng et al., 2011; Schönbrodt-Stitt et al.,
2013b). Estimations on the long-term annual soil losses
based on empirical modelling amount to 157 million
megagram (Lu & Higgitt, 2000). The soil erosion induces
sedimentation of the reservoir, and hence an attenuated eco-
logical functioning of the Yangtze basin, reduced lifespan of
the dam and a declined capacity to control floods (Shi et al.,
2004; Zhang & Lou, 2011; Xu et al., 2013). Since the 1990s,
conservation measures were established to mitigate the haz-
ardous effects. The measures include programmes to imple-
ment conservation farming practices and to stabilize steep
sloping surfaces mainly by reforestation and the construction
of cropland terraces (Xu et al., 2013).
For a detailed assessment of the conservation measures,

an efficient tool is required that spatially identifies patterns
of sediment reallocations in a mountainous and highly dy-
namic region (Shi et al., 2012). In the TGRA, the major sed-
iment yield caused by soil erosion is attributable to only very
few heavy storm events each year (Fang et al., 2013). Thus,
event-based estimations on sediment reallocations are of
major concern for regional authorities (Peng et al., 2011).
Consequently, there is a demand for an event-based ap-
proach that spatially quantifies soil erosion and deposition
at catchment scale (Cai et al., 2005; Shi et al., 2012). This
is addressed by the concept of sediment connectivity, which
describes transfer characteristics of sediment through a land-
scape system at various scales (Hooke, 2003; Fryirs, 2013).
Several studies conducted a detailed analysis of sediment
connectivity while identifying sediment sources, deposits
and pathways using combinations of mapping and model-
ling techniques (Keesstra et al., 2009; Lexartza-Artza &
Wainwright, 2011; Marchamalo et al., 2015). In the TGRA,
the demand was only partially addressed in recent attempts
of soil erosion modelling (Shi et al., 2012).
Empirical soil erosion models, such as the Universal Soil

Loss Equation (USLE; Wischmeier & Smith, 1981) and the
Revised Universal Soil Loss Equation (RUSLE; Renard
et al., 1997) were extensively applied in the TGRA (Shi
Copyright © 2016 John Wiley & Sons, Ltd.
et al., 2004; Zhang, 2008; Strehmel et al., 2015). The
USLE/RUSLE establishes relationships between rainfall, to-
pography, conservation practices, soil and vegetation to esti-
mate long-term annual averages of sheet and rill erosion
(Zhou et al., 2008). Soil loss is calculated from the product
of environmental coefficients, which were derived from field
observations in 37 US states at plot scale (Zhang et al.,
1996; Shen et al., 2009; Terranova et al., 2009). The
USLE/RUSLE predicts an average soil loss for an extended
time period, provided that the application remains within the
range of conditions for which the model was developed
(Grønsten & Lundekvam, 2006). However, erosive effects
of complex topography are not included, because the influ-
ence of flow convergence and divergence is not adequately
regarded (Mitasova et al., 1996; Tarboton, 1997; Capolongo
et al., 2008). Beyond, these approaches are incapable to pro-
vide estimations of spatial erosion structures, while deposi-
tion is disregarded at all (Zhang et al., 1996).
A few studies applied physically based erosion and sedi-

ment transport models in the TGRA, such as the European
Soil Erosion Model, the Water Erosion Prediction Project
(WEPP) or the Water and Tillage Erosion Model (WaTEM;
Cai et al., 2005; Shen et al., 2010; Shi et al., 2012). These
models include the spatial variability of the erosion pro-
cesses and provide spatially distributed outputs of erosion
and deposition. They are based on simulating the individual
components of the erosion processes by solving the corre-
sponding mass equations (Zhang et al., 1996; Aksoy &
Kavvas, 2005). Thus, a variety of spatially distributed input
data with respect to soil conditions, terrain and land use is
required. The application and performance of physically
based models is primarily determined by the quality of the
input data. In this context, an inadequate resolution or con-
sistency may not represent the erosion-related heterogeneity
of the study area (Jetten et al., 2003; Jordan et al., 2005).
Thus, the models underperform if the complexity of the
model is not in agreement with the data quality (Van
Rompaey & Govers, 2002). Moreover, physically based
models can be distinguished between event-based models
to simulate sediment reallocations of single erosive events
and continuous models, addressing a series of events
(Nearing et al., 2005). Input data requirements for continu-
ous models are less restrictive compared with event-based
models, because an event-specific parametrization is
avoided. However, event-based models are preferable to in-
vestigate erosive responses in areas with few but high inten-
sity rainfall such as the TGRA (Cai et al., 2005). Recent
erosion studies in the TGRA, using physically based erosion
and deposition models, produced acceptable results (Cai
et al., 2005; Shen et al., 2009, 2010; Shi et al., 2012). How-
ever, most of the studies applied continuous models because
of limited data availability at the catchment scale (Shen
et al., 2009, 2010; Shi et al., 2012). By contrast, Cai et al.
(2005) applied an event-based and physically based model
at the plot scale that facilitates parametrization, but is inade-
quate to assess spatial organization of conservation mea-
sures in the catchment (Shi et al., 2012).
LAND DEGRADATION & DEVELOPMENT, 28: 1212–1227 (2017)
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This study aims to provide a methodological framework
that enables a detailed assessment of sediment reallocations
due to erosive rainfall events in a data scarce and small
mountainous catchment within the TGRA. To identify and
characterize erosive events, we continuously monitored the
catchment on rainfall, runoff and sediment yield in temporal
resolution of 10min for a period of 12months. The reliability
of the monitoring data was evaluated by a comparison with
long-term observations. Erosive events were determined
based on the cause–effect relationship between rainfall, runoff
and sediment yield. We applied EROSION 3D that represents
an event-based and physically based erosion and deposition
model (Schmidt, 1991, 1992). Digital soil mapping (DSM)
techniques were used to generate spatially distributed soil
property information, therefore facilitating the model parame-
trization in an area of general data scarcity. Thus, the objective
of the study is the spatial identification and characterization
of sediment sources and deposits within the catchment.

MATERIAL AND METHODS

Study Area

The study was conducted in the Upper Badong catchment
(Figure 1), located approximately 74km upstream of the
TGD in western Hubei Province (31°1 24 N, 110°20 35 E).
The area covers 428.7 ha of which 72% are exposed to the
north. Elevation ranges from 469 to 1,483m with an average
of 1,053m. The average slope angle amounts to 26° and
ranges between 0° and 53°. The lithology of the southern
study area exhibits clayed siltstone linked to the middle Trias-
sic formation, while dolomite and microcrystalline limestone
from the lower Triassic is dominant in the north. According
to the Chinese Soil Taxonomic system, dominant soil groups
Figure 1. Study area (right) and its location with

Copyright © 2016 John Wiley & Sons, Ltd.
are purple soils in the south and yellow to yellow-brown soils
in the north. Following theWorld Reference Base for Soil Re-
sources (WRB, 2014), these soils refer to Cambisols and
Alisols, respectively. The climate is humid subtropical with
an average temperature of 12.9°C and an average annual pre-
cipitation of 1,082mm. The rainfall regime of the study area
shows a unimodal distribution with 68% of rainfall occurring
from May to September. Land use is dominated by secondary
forest vegetation (79.4%) in the steep hillslopes of the moun-
tainous study area. Small agricultural plots (<0.5ha) are
scattered in the study area but concentrate to unconsolidated
farmland patches in the north at elevations between 500 and
700m, in the middle-east from 850 to 1,050m, and in the
south from 1,150 to 1,250m. Because the climate allows
two crops per year, the main patterns of crop rotation show
corn and sweet potato in summer, followed by rapeseed and
cabbage in winter. Conservation farming practices, such as
contour tillage, furrow-ridge tillage or mulching with crop
residues after harvest, are increasingly implemented.

Data Acquisition and Preparation

We established a monitoring network to continuously record
data on rainfall, runoff and sediment yields (Figure 1). The
data were logged in a temporal resolution of 10min for a pe-
riod of 12months, starting in June 2013.
Rainfall data were obtained by two self-emptying tipping

bucket rain gauges using the Vantage Pro 2 system by Davis
Instruments (Hayward, CA , USA) with a single impulse ca-
pacity of 0.2mm. The calibrated rain gauges were installed
at elevations of 501 and 1,193m within the study area
(Figure 1). The orifices were positioned at 1.5m above
ground to avoid disturbance by vegetation and wind. For
further processing, data from both rain gauges were
in the Three Gorges Reservoir Area (left).

LAND DEGRADATION & DEVELOPMENT, 28: 1212–1227 (2017)



1215SEDIMENT REALLOCATIONS DUE TO EROSIVE RAINFALL EVENTS
averaged. We compared the measured short-term data with
long-term monthly records to evaluate their representative-
ness. The long-term records were obtained between 1960
and 2009 by the China Meteorological Administration
(CMA, 2012) at a climate station (ID 57355) in distance of
approximately 7 km from the study area. The analysis was
accomplished by comparing the distributions of the data re-
gimes using descriptive statistics.
Runoff data were obtained using a water pressure sensor

(PTM/N/SDI-12 by STS-Sensors) that was positioned at
the outlet of the catchment (Figure 1). Primarily, the water
level was derived based on the water pressure and the geom-
etry of the flow cross-section, which was measured in-situ.
Subsequently, we applied the standard flow rate equation
to determine the runoff (Kirkby, 1978):

Q ¼ A*Vq; (1)

where: Q is the runoff (m3s�1), A is the flow cross-section
(m2) and Vq is the average flow velocity (ms�1). Vq was cal-
culated according to the empirical Manning equation for
gravity flow in open channels (Kirkby, 1978):

Vq ¼ 1
n
*δ2=3s1=2; (2)

where: n is the Manning coefficient for the hydraulic surface
roughness (sm�1/3), s is the slope gradient (�) and δ is the
flow depth (m).
We obtained sediment yield data from the outlet using a

turbidity sensor (SN-PNEPA by PONSEL).The sensor mea-
sures the light intensity with an infrared beam that is
scattered because of suspended particles. The measure is
expressed in nephelometric turbidity units (NTU) and indi-
cates the clarity of the water, which is mainly influenced
by suspended sediments from eroding soil (Satterland & Ad-
ams, 1992; Anderson, 2005). Because the NTU measure de-
pends on the properties of the suspended sediment, a
conversion into mass units (mgL�1) requires a site-specific
calibration. Thus, we progressively added 250 composite
sediment samples from the entire study area to a defined wa-
ter volume of 5L. By stepwise NTU measurements, we de-
rived a calibration curve to convert NTU values to
suspended sediment load in mass units.
During three field campaigns between 2012 and 2014, we

conducted singular topsoil (0–20 cm depth) moisture mea-
surements (TDR-sensor ML3 Thetakit by Delta-T Devices)
at 235 sites randomly distributed over the entire study area.
We further collected 140 topsoil samples (0–25 cm depth)
according to statistical sampling designs, which adequately
enable the generation of soil property maps by DSM tech-
niques (Stumpf et al., 2015a, 2015b). The samples were an-
alyzed for organic carbon content, particle size distribution
and bulk density, because these parameters outline relevant
soil information for the application of EROSION 3D. At
each sampling location, we pooled five sub samples from
the corners and the center of a 40×40 cm square to obtain
composite samples. In addition, we pooled three sub
Copyright © 2016 John Wiley & Sons, Ltd.
samples, which were randomly obtained within this square,
using a cylindrical core cutter with a defined volume of
100 cm3. We used aliquots (50 g) of the homogenized and
dried (40 °C) composite samples to determine the soil or-
ganic carbon content (elemental analyzer Vario EL III).
The remains of the composite samples were used for particle
size analysis. The samples were sieved (<0.63mm) to sepa-
rate sand contents, while silt and clay contents were sepa-
rated using the Sedigraph III 5120 by micromeritics
GmbH. The bulk density was derived from the dry weight
(105 °C) of the volume defined samples.
Land use information was based on a RapidEye satellite

image from 28 September 2012, providing five spectral
bands in a spatial resolution of 5 × 5m (RapidEye, 2012).
We derived six land use classes according to ‘cropland’,
‘grassland’, ‘broadleaf’, ‘conifer’, ‘shrub’, ‘woods’ and
‘built up’ (Liu et al., 2005). During the field campaigns in
2013 and 2014, we further refined the land use class ‘crop-
land’ according to occurring crop rotations into ‘corn-
rapeseed’ and ‘potato-cabbage’ based on in situ observa-
tions. Moreover, we generated a digital elevation model
(DEM) based on digitizing a topographical map of the catch-
ment with contour lines at 10m intervals. The data were
rasterized and resampled to a cell size of 25×25m to buffer
potential uncertainties.

Determination of Erosive Events

We used monitoring data on rainfall, runoff and sediment
yield to determine rainfall–runoff events and their associated
erosive response. In a first step, we disaggregated the rainfall
record according to a minimum inter-event time of 6 h using
the R-package ‘hydromad’ (Andrews & Guillaume, 2015).
This threshold is commonly applied in event-based erosion
studies (Wischmeier & Smith, 1981; Xie et al., 2002;
Bagarello et al., 2008; Soulis et al., 2009; Taguas et al.,
2011) to identify independent rainfall events with similar
initial soil moisture conditions that control runoff generation
(Bracken et al., 2008; Todisco, 2014). In a second step, we
determined the direct runoff associated with each rainfall
event. Direct runoff originates from rainfall that contributes
immediately to the streamflow, while baseflow reaches the
streamflow with a substantial delay (Merz et al., 2006).
We applied a recursive digital filter technique on the runoff
record to separate baseflow from direct runoff (Nathan &
McMahon, 1990; Arnold et al., 1995). Using the R-package
‘Ecohydrology’ (Fuka et al., 2014), the following filter
equation was applied:

qt ¼ β*qt�1 þ
1þ β
2

* Qt � Qt�1ð Þ; (3)

where: qt (m
3 s�1) is the filtered direct runoff at the time step

t (min), Qt (m
3 s�1) is the original streamflow and β (�) is

the filter parameter.
While an initial rainfall impulse defined the start of a

rainfall–runoff event, the end was indicated when no longer
associated direct runoff occurred. Using this event distinc-
tion, we attributed the respective sediment yield to each
LAND DEGRADATION & DEVELOPMENT, 28: 1212–1227 (2017)
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rainfall–runoff event to identify their erosive response. The
adequacy of this procedure depends on the strength of the
cause–effect relationship between rainfall, runoff and sedi-
ment yields within the specific catchment (Todisco et al.,
2014). This was evaluated by comparing the regimes of
the monitoring data over the measuring period, using a cor-
relation matrix.
For further analyses, we selected these events, which ex-

hibit direct runoff and an associated erosive response. In
contrast, we rejected those events where a distinct attribution
of direct runoff to a rainfall event was impossible because of
inadequate separation between direct runoff and baseflow
(Blume et al., 2007).
Each of the erosive rainfall–runoff events was character-

ized according to the event-triggering rainfall properties
(Table II), such as total rainfall amount P (mm), the duration
of occurring rainfall tp (h), the maximum rainfall intensity in
30min I30 (mm*h�1), the maximum rainfall intensity in
60min I60 (mm*h�1) and the erosivity EI30 calculated as
follows (Brown & Foster, 1987):

EI30 ¼ ∑
0

r¼1
E*I30; (4)

where: E (MJ2 ha�1) is the rainfall kinetic energy for a time
interval r that can be estimated by

E ¼ 0:29* 1� 0:72*exp �0:05irð Þ½ �*Pr: (5)

Modelling Sediment Reallocation

We applied EROSION 3D (Schmidt, 1991, 1992), a raster-
based and physically based erosion and deposition model
that calculates soil losses and deposition, initiated by single
rainfall events or event sequences in small watersheds. The
model includes the erosional processes of direct runoff, de-
tachment of soil particles by rainfall splash and runoff, trans-
port of detached particles by runoff, routing of runoff and
sediment and sediment deposition. The mathematical incor-
poration of these processes is based on two subroutines,
addressing runoff and more explicitly erosion.
The runoff subroutine calculates the rainfall excess ac-

cording to a modified Green and Ampt infiltration equation
(Green & Ampt, 1911; Weigert & Schmidt, 2005;
Schindewolf & Schmidt, 2012):

i ¼ ks*g þ ks*
Ψm0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ks*Ψm0*t
Pf * Θs�Θ0ð Þ

r ; (6)

where: i is the infiltration rate [kg/(m2 s)], ks is the saturated
hydraulic conductivity [(kg s) m�3], g is the gravity (m s�2),
Ψm0 is the matric potential (Nmkg�1) related to the initial
water content Θ0 (Nmkg�1), t is time (s), Pf is fluid density
(kgm�3) and Θs is the saturated water content (m3m�3).
The saturated hydraulic conductivity ks is estimated using
the pedotransfer functions according to Campbell (1991):
Copyright © 2016 John Wiley & Sons, Ltd.
ks ¼ 4*10�3* 1:3*
10�3

Pb

� �1:3*b
* exp �0:069*T � 0:037*Uð

(7)
with

b ¼ 10�3*D
� ��0:5 þ 0:2*δp; (8)

where: Pb is the bulk density (kgm�3), T is the clay
content (kgkg�1), U is the silt content (kgkg�1), b is
parameter (�), D is the average diameter of soil particles
(m) and δp is the standard deviation of the average diameter
of soil particles (�).
Because the pedotransfer function assumes a rigid soil

matrix, the temporal variability of the soil structure is
disregarded. Therefore, the saturated hydraulic conductivity
ks is corrected by a multiplication with an empirically
derived so-called skinfactor to adjust the infiltration rates
(Schindewolf & Schmidt, 2012).
The erosion subroutine, thus the spatial quantification of

particle detachment, transport and deposition, is based on
the momentum-flux approach (Schmidt, 1991). Basically,
this approach follows the assumption that the erosive impact
of direct runoff and rainfall splash is proportional to their
exerted momentum fluxes (Schindewolf & Schmidt, 2012).
Where the momentum flux of the direct runoff flow φq is
defined by

ϕq ¼
Wq*Vq

ΔX
; (9)

the momentum flux of the rainfall splash ϕr,α follows the
equation

φr;α ¼ Wr*Vr*sinα* 1� CLð Þ; (10)

where: Wq and Wr are the mass rate of direct runoff flow
respectively rainfall splash, Vq and Vr are the average flow
velocity respectively velocity of the rainfall droplets, Δx is
the length of the slope segment, α is the slope angle and
CL the soil cover.
Because an observable rate of erosion requires a mini-

mum rate of direct runoff qcrit, the erosion resistance of the
soil is defined as the critical momentum flux φcrit, following
the equation (Schindewolf & Schmidt, 2012)

φcrit ¼
qcrit*Pq*Vq

ΔX
; (11)

where: qcrit is the volume rate of flow [m3 (ms)�1] at initial
erosion, Pq is the fluid density (kgm�3), Δx is the slope
segment width (m) and Vq is the flow velocity (m s-1) that
we derived according to Equation (2).
Besides the obtained rainfall records and the DEM,

EROSION 3D requires a set of raster-based soil property
maps that represent their spatial heterogeneity at catchment
scale as good as possible. The parameters of particle size
distributions according to textural classes (%), bulk density
LAND DEGRADATION & DEVELOPMENT, 28: 1212–1227 (2017)



1217SEDIMENT REALLOCATIONS DUE TO EROSIVE RAINFALL EVENTS
(kgm�3) and organic carbon content (%) were assumed to
be steady over the period of interest. In contrast, the param-
eters soil cover (%), erosion resistance (Nm�2), hydraulic
roughness according to Manning’s n (Nm�1/3), skinfactor
(�) to correct infiltration rates and the initial soil moisture
(vol.�%) were adjusted for each event (Schmidt et al.,
1999; Schindewolf & Schmidt, 2012).
Digital soil mapping was applied to derive the steady soil

parameters, because DSM techniques are cost-efficient and
provide soil property maps in high resolution (McBratney
et al., 2003; Behrens et al., 2010; Behrens et al., 2014; Zhu
et al., 2015). Generally, DSM enables to obtain the spatial
distribution of soil properties by linking soil samples at points
with correlated and colocated environmental predictor covar-
iates using classification or regression rules (McBratney et al.,
2003). We applied random forest (RF) regression, an ensem-
ble classifier that is based on averaging the results of multiple
randomized decision tree models for the final estimations
(Peters et al., 2007; Breiman, 2001). RF was selected because
it includes an internal error estimation and has been success-
fully applied in the field of DSM (Peters et al., 2007; Heung
et al., 2014; Stumpf et al., 2015b). We set-up RF regression
models for each required steady soil parameter using the 140
topsoil samples and a pool of continuous terrain covariates,
because RF is robust to noise and multi-collinearity in the pre-
dictors (Díaz-Uriarte & De Andrés, 2006). The covariates
were derived by a digital terrain analysis using the SAGA
GIS-toolbox ‘Terrain Analysis – Morphometry/Hydrology’
(SAGA, 2012). For processing RF, we applied the R-package
‘randomForest’ (Liaw & Wiener, 2002; Table I).
The soil cover was estimated by interpreting the refined

land use map in combination with crop rotation patterns
and the seasonally occurring grow stages. The input param-
eters erosion resistance, hydraulic roughness and skinfactor
were estimated using a parameter catalogue (Michael,
2000). This catalogue contains a progressively updated com-
pilation of empirically obtained parameter values for differ-
ent soils and crops, considering seasonal variations and
management practices (Schmidt et al., 1999; Schindewolf
& Schmidt, 2012). The parameter soil moisture is most sen-
sitive and highly variable in time and space (Schmidt, 1992;
Starkloff & Stolte, 2014). Thus, we initially used the
average soil moisture values from the parameter catalogue.
Then, we iteratively ran the EROSION 3D model with
varying soil moisture values and selected the best fit
between observed and predicted direct runoff at the outlet
Table I. Summary statistics (min: minimum; max: maximum; average; S
R2; root mean squared error: RMSE) of steady soil parameters

Min Max

Clay content (%) 18.6 44.8
Silt content (%) 43.5 69.0
Sand content (%) 1.4 30.8
Bulk density (kgm�3) 700 2,000
Organic carbon (%) 1.0 3.2

Copyright © 2016 John Wiley & Sons, Ltd.
(Jetten et al., 1999; Schmidt et al., 1999). Because of the
average moisture values of the test model runs were only
allowed to deviate by 20% from the average observed data,
we ensured that the final moisture setting remained in
realistic limits.
For the EROSION 3D model runs, all input parameter

were harmonized to a cell size of 25×25m. We validated
the model output of each event individually by comparing
the predicted sediment yield at the catchment outlet with
the observed sediment yield. To express the discrepancy,
we used the proportional deviation (ERR) of the prediction
from the respective observation. Moreover, we assessed
the average model performance for the sequence of erosive
events using the averaged individual prediction error
(ERRaverage), the root mean square error (Willmott &
Matsuura, 2005) and the Nash–Sutcliff coefficient (NS;
Nash & Sutcliff, 1970; Krause et al., 2005). The equations
of the quality measures are defined as follows:

ERR ¼ SYobs � SY simj j
SYobs

;
(12)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 SY sim;i � SYobs;i
� �2

n

s
; (13)

NS ¼ 1� ∑n
i¼1 SYobs;i � SY sim;i

� �2
∑n

i¼1 SYobs;i � SYave;obs;i
� �2 ; (14)

where: SYobs (Mg) is the observed sediment yield of an event
i, SYsim (Mg) is the predicted sediment yield and SYave,obs
(Mg) is the average observed sediment yield. For model
validation, we used the R-package ‘hydroGOF’ by
Zambrano-Bigiarini (2014).
Finally, we mapped the erosion and deposition patterns as

a budget over the erosive events to spatially identify sedi-
ment sources and deposits. We interpreted the results in
context of the occurring land use and topography. The
model results of each pixel were separated according to four
classes (severe: >50 t ha�1; high: 20–50 t ha�1; moderate:
10–20 t ha�1; low: 0–10 t ha�1) for erosion and deposition,
respectively. This classification is based on thresholds that
are commonly applied in the TGRA with respect to erosion
studies (Shi et al., 2004; Shi et al., 2012).
D: standard deviation) and accuracy (coefficient of determination:

Average SD RMSE R2

32.6 3.7 5.1 0.58
62.3 3.9 5.0 0.57
4.9 5.2 3.9 0.79

1,200 100 100 0.36
2.1 0.4 0.5 0.45
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Table II. Properties of selected and excluded events. The duration (D), the rainfall amount (P), the peak intensity of 60-min and 30-min in-
tervals (I60, I30), the erosivity (EI30) and the observed sediment yield (SYobs) are applied to characterize the events

Time D (min) P (mm) I60 (mm/60min) I30 (mm/30min)
EI30

(MJ ha-1*I30) SYobs (Mg)

Selected for
further analysis

SY< 1Mg 20.06.2013 100 13.2 12.6 11.6 88.1 0.43
29.07.2013 220 17.2 9.2 7.8 52.2 0.92
18.08.2013 100 6.8 6.4 6.4 23.4 0.34
25.08.2013 340 11.2 7.4 6.8 19.9 0.88
27.03.2014 50 9.8 9.8 8.0 26.4 0.18
28.03.2014 200 19.8 13.0 7.6 53.8 0.79
01.05.2014 530 14.6 7.8 5.2 8.8 0.73
24.05.2014 310 11.8 7.0 4.4 5.9 0.62

SY> 1Mg 22.06.2013 170 28.6 22.2 16.4 501.7 4.21
30.06.2013 100 14.2 13.6 13.6 154.5 1.03
05.07.2013 530 39.4 26.0 17.6 516.5 3.88
21.07.2013 270 19.8 14.2 12 116.9 2.58
03.08.2013 400 22.0 21.6 15.2 286 1.19
28.08.2013 720 42.6 34.8 32.4 2789.9 7.03

Excluded 05.06.2013 1,158 49.2 13.6 9.6 120.2 —
24.06.2013 1,458 36.4 7.0 4.6 22.5 —
23.08.2013 2,368 25.0 8.0 5.6 17.0 —
09.09.2013 1,692 41.2 9.0 7.4 48.4 —
20.04.2014 1,422 42.0 13.8 9.4 81.1 —
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RESULTS

Evaluation of the Monitoring Data

We compared the monitored rainfall data (June 213 to May
2014) to the long-term records from Badong climate station
(January 1960 to December 2009; Figure 2). With 895mm,
the total rainfall amount of the short-term records is less
Figure 2. Regimes of monthly rainfall, runoff and sediment yield data in the mo
long-term records from Badong station (above). Regimes of runoff

Copyright © 2016 John Wiley & Sons, Ltd.
compared with the long-term annual average of 1,082mm,
revealing relatively dry conditions during the monitoring
period. This decline is attributable to the months of May,
July and October, showing a reduced rainfall amount
between 54 and 68mm. The deviations of the remaining
months range between 1mm in January and 20mm in June
with a positive budget of 11mm. Furthermore, we compared
nitoring period. Rainfall records are compared with ranges and averages of
and sediment yield are compared among each other (below).
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the short-term amounts per month with the long-term aver-
age maxima and minima per month. The results show that
the obtained records were all within the range of the long-
term records (Figure 2). Both short-term and long-term
records exhibit a unimodal distribution with 67% and 68%
of the annual rainfall amounts occurring during the wet sea-
son from May to September. The analogy between the rain-
fall records reveal that the short-term record is representative
for the area.
Moreover, we evaluated the interrelation between the

monitored rainfall, runoff and sediment records within the
study area (Figure 2). The annual distribution of the ob-
tained runoff sums and sediment yields per month corre-
sponds to the recorded rainfall regime. With a total annual
runoff of 324m3ha�1, 80% occurs in the wet season from
May to September. We found the maximum runoff in June
with 66m3 ha�1, while from December to January, less than
1m3ha�1 runoff was recorded. Similarly, the total annual
sediment yield adds up to 666 kg ha�1, of which 71% occurs
in the wet season. June shows the maximum yield with
116 kg ha�1, while minima occur from December to Febru-
ary with less than 3kg ha�1 (Figure 2). We further calculated
the relation of rainfall, runoff and sediment yield by using
the correlation coefficient. With a resolution of 10min, rain-
fall data exhibit an r of 0.94 to runoff and 0.89 to sediment
yield data, while the latter two are correlated with r=0.84.
The similar regimes of the recorded data and the associated
r-values (>0.80) approve a strong cause–effect relationship
between rainfall, runoff and sediment yield.

Properties of Erosive Rainfall Events

During the monitoring period, we identified 19 erosive
events, of which we excluded five from further analyses
(Table II). Compared with the selected events and referring
to the average properties, the excluded events show an
increase in duration D and total rainfall amount P of
1,140min and 19.4mm, respectively. The average peak
intensities I60, I30 are lower by 4.6mm 60min�1 and
4.5mm 30min�1, respectively, and the average erosivity
EI30 are lower by 273.9MJha�1mmh�1. Moreover, the
excluded events show intra-event periods of no rainfall
close to the inter-event time of 6 h. Summarizing, the ex-
cluded events generally exhibit increased durations with
decreased intensities of discontinuous rainfall. These pat-
terns result in temporally variable runoff generation, thus,
preventing an adequate separation between direct runoff
and baseflow.
The average properties of the 14 selected events show a

duration D of 276min, a total rainfall of 19.4mm, peak
intensities I60 and I30 of 14.7 and 11.8, and an erosivity
EI30 of 331.7MJha�1mmh 1. These event properties
resulted in sediment yields SYobs ranging between 0.18
and 7.03Mg with an average of 1.77Mg and a total
sediment yield of 24.8Mg. Eight events show a sediment
yield less than 1Mg with an average of 0.61Mg (small
events). Six events show sediment yields above 1Mg with
an average of 3.32Mg (large events; Table II). The large
Copyright © 2016 John Wiley & Sons, Ltd.
events account for 80.3% of the sediment yield and 61%
of the total rainfall amounts over all events.

Model Performance

To evaluate the model performance for each event, we de-
rived the individual model error (ERR). We compared the
ERR values to the observed sediment yields (Figure 3).
Generally, small events with SY below 1Mg exhibit in-
creased model errors compared with events with sediment
yields above 1Mg. The average model error (ERRaverage)
of the eight small events amounts to 36.2%, ranging be-
tween 15.1% and 62%. Except for one event, the ERR re-
fer to severe underprediction. In contrast, the six large
events show an average model error of 7.5%, ranging from
0.1% to 14.7%. Those values mainly result from overpre-
diction. The simulated SY for all events amounts 24.2Mg
and deviates by 2.3% from the observed sediment yield
of 24.8Mg. The ERRaverage of all events results in
23.9%. Comparing the observed versus the predicted sedi-
ment yields across all events show a NS-value of 0.98 and
a root mean square error of 0.27 (Figure 3). Thus, the av-
erage model quality is high. However, the evaluation of the
individual model errors reveals ambiguous patterns. While
the model results for large events (>1Mg) show low ERR
errors, the model runs for the small events (<1Mg) result
in increased ERR errors.

Characteristics of Sediment Reallocations

We mapped the model results according to four classes of
‘severe’ (>50Mgha�1), ‘high’ (20–50Mgha�1), ‘moder-
ate’ (10–20Mgha�1) and ‘low’ (<10Mgha�1) erosion and
deposition, respectively (Figure 4). Moreover, we evaluated
the spatial extent of erosion and deposition zones (Table III)
according to land use patterns (Table IV). Because the large
events with a SY>Mg account for the vast majority of all
events (80.3%) and uncertainties of the small events
(<1Mg) are high (ERRaverage = 36.2%), we excluded the lat-
ter from the spatial analysis.
Agricultural land (land use classes: ‘corn-rapeseed’,

‘potato-cabbage’ and ‘grassland’) presents 17% (73.2 ha)
of the total study area (428.7 ha). In 79.4% (340.4 ha) of the
area ‘mixed forest’, composed of the land use classes ‘broad-
leaf’, ‘conifer’, ‘woods’ and ‘shrub’ occurs. A small propor-
tion of 3.5% (15.1 ha) is dedicated to small farm buildings.
Corresponding to the largest coherent agricultural area,

‘severe’ and ‘high’ erosion is predominantly located in the
lowlands of the north, where the elevation ranges between
500 and 650m. A further band of ‘severe’ and ‘high’ erosion
extends south of the major agricultural area at elevations be-
tween 800 and 900m. ‘Low’ erosion mainly occurs on the
agricultural areas in the south at elevations between 900
and 1,400m. Average slope inclinations of the erosion area
amount to 21.5°, ranging between 4.3° and 39.4°. The
mapping shows erosion on an area of 47.5 ha, accounting
for 11.1% of the entire study area (Figure 4). The simulated
erosion rate ranges between 0.01 and 527Mgha�1 with an
average of 49.9Mgha�1 referring to the erosion area. A
LAND DEGRADATION & DEVELOPMENT, 28: 1212–1227 (2017)



Figure 3. Individual and average model performance for all erosive events (black dots). Performance variability is expressed by comparing the individual pre-
diction error (ERR) to the observed sediment yields (above). Average model performance is revealed by the averaged individual prediction error (ERRaverage,
above) and by comparing observed to predicted sediment yields, applying the Nash–Sutcliffe coefficient (NS) and the root mean square error (RMSE; below).
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proportion of 37.5% (17.8ha) of the erosion area is classified
as ‘severe’ and 45.1% (21.4 ha) as ‘low’ (Table III). In terms
of land use, erosion mainly occurs on ‘corn-rapeseed’ and
‘potato-cabbage’ with approximately 69% of the respective
area (Table IV).
‘Severe’ and ‘high’ sediment depositions mainly occur in

the two major erosive areas in the north. Depositions are con-
centrated lateral of topographical depression channels, at field
borders with high vegetation cover, and in infrastructural
areas. In the south of the study area, at an elevation between
900 and 1,400m, depositions are located adjacent to erosive
areas and mainly classified as ‘low’. The total deposition area
outlines an average slope inclination of 19.8°, ranging from
1.1° to 35.5°, therefore showing a marginal decline compared
with the erosion area. Deposition occurs on 47.3ha, thus 11%
of the study area (Figure 4). The deposition rate ranges
between 0.01 and 499.5Mgha�1 with an average of
40.3Mgha�1. A proportion of 61.5% (29.1 ha) of the deposi-
tion area is classified as ‘low’, while the remaining classes oc-
cupy a real proportions between 9.3% (4.4ha) and 15.8%
(7.5ha; Table III). Referring to land use, deposition occurs
on each class, while ‘built’ is occupied by 41.7% (6.3 ha) of
the area. The proportional deposition area of the remaining
land use classes ranges between 9.7% (33.0 ha) for ‘mixed for-
est’ and 18.4% (1.1ha) for ‘grassland’ (Table IV).
Copyright © 2016 John Wiley & Sons, Ltd.
DISCUSSION

Erosive Events and Data Quality

In this study, rainfall–runoff events were delimited by an ini-
tial rainfall impulse and the remission of the associated di-
rect runoff. This procedure is in accordance with other
studies on rainfall–runoff events (Baltas et al., 2007; Blume
et al., 2007). Subsequently, observed sediment yields were
attributed to identify the respective erosive response. How-
ever, the event properties that determine the erosive response
highly depend on methodological settings for data acquisi-
tion, event exclusion, event classification rules and the
inter-event time to disaggregate a rainfall record (Dunkerley,
2008). Todisco et al. (2014) argued that the event properties
change in time and space and can be referred to as arbitrary
because of customized settings for individual applications
and environments. This limits the comparability in terms of
event-based erosion studies.
In addition, high-quality monitoring data on erosion

become increasingly important to enable an evaluation of
the site-specific cause–effect relationship and to address
the requirements of complex model structures (Aksoy &
Kavvas, 2005; Fang et al., 2013). Commonly, continuous
and high-resolution data on rainfall and runoff are available.
Contrary, continuous data on sediment loads are often
LAND DEGRADATION & DEVELOPMENT, 28: 1212–1227 (2017)



Figure 4. Sediment sources and deposits as budget across erosive events
with sediment yields higher than 1 t. Depression channels and land use
classes according to agricultural land (composed of the classes ‘cropland’
and ‘grassland’) and mixed forest (composed of ‘broadleaf’, ‘conifer’,
‘woods’ and ‘shrub’) are indicated. [Colour figure can be viewed at

wileyonlinelibrary.com]
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difficult to obtain because of required maintenance and
operating personnel (Rickemann & McArdell, 2007).
Within the TGRA, Fang et al. (2013) investigated erosive

events in a small catchment of 1,670 ha. Rainfall and runoff
data were continuously measured in a resolution of 15min.
Data on sediment loads were manually obtained only during
rainfall events. From a total of 205 rainfall–runoff events be-
tween 1989 and 2004, ten were classified as extreme accord-
ing to a qualitative assessment of surface damage because of
erosion. These events caused 83.3% of the sediment load.
This supports Cai et al. (2005), who stated that most erosion
in the TGRA is associated with very few heavy rainfall
events each year.
In contrast, we continuously derived data on rainfall, run-

off and sediment yield in a 10min resolution over a period
Table III. Area of erosion and deposition (ha) and the erosion rate
according to classes (severe: >50Mg ha�1, high: 20–50Mg ha�1,
moderate: 10–20Mg ha�1, low: <10Mg ha�1)

Total
(ha)

Severe
(%)

High
(%)

Moderate
(%)

Low
(%)

Erosion 47.5 37.5 13.8 3.6 45.1
Deposition 47.3 15.8 13.4 9.3 61.5

Copyright © 2016 John Wiley & Sons, Ltd.
of 12months within a catchment of 429 ha (Figure 1). The
rainfall data were approved to be representative for the re-
gion, because the amounts per months were within the range
of averaged daily long-term records (Figure 2). Similar to
Fang et al. (2013), a few large events caused the major pro-
portion of the total sediment yield. We identified 14 events
of which six showed sediment yields above 1Mg, account-
ing for 80.3% of the total sediment yield. Moreover, we de-
tected high correlations between the regimes of rainfall,
runoff and sediment yields with r-values above 0.8, while
all regimes outline peak values during the wet season and
minimum values in winter. Both the high correlations and
similar distributions indicate a strong cause–effect relation-
ship between the monitoring data.

Erosion Modelling in the Three Gorges Reservoir Area

The performance of physically based erosion models
depends on the model capability to deal with the natural
complexity of the erosion process and the spatial heterogene-
ity of the study area (De Vente & Poesen, 2005). Further-
more, the availability and quality of the input data need to
be in agreement with the complexity of the model routines
(Van Rompaey & Govers, 2002; De Vente et al., 2013).
Thus, the combined criteria of the model design, environ-
mental conditions and data infrastructure determine the
adequacy of a model for a specific research question
(Boardman, 2006). In the TGRA, a few physically based
model attempts have been conducted to test model
performances and to assess erosion control measures at
catchment scale (Shen et al., 2010; Shi et al., 2012).
Shi et al. (2012) applied WaTEM/SEDEM in catchment

of 1,670 ha. This model uses the empirical RUSLE to calcu-
late annual water erosion on hillslopes and a sediment
routing along the runoff channels by incorporating local sed-
iment transport capacity (Van Rompaey et al., 2001). Shen
et al. (2010) applied the WEPP model in a catchment of
162 ha. WEPP uses the Green-Ampt infiltration approach
to simulate runoff and a steady-state sub-routine to solve a
sediment continuity equation at a peak runoff rate (Flanagan
& Nearing, 2000). We applied EROSION 3D in a catchment
of 429 ha, a model that also uses the Green-Ampt infiltration
equation for the runoff routine. However, the erosion routine
is based on the momentum flux approach that relates the ero-
sive impact of runoff and rainfall to their exerted momentum
flux (Schmidt et al., 1999; Schindewolf & Schmidt, 2012).
Both WaTEM/SEDEM and WEPP present continuous

model approaches producing average values for erosion
and deposition. In contrast, EROSION 3D is an event-based
model, and therefore capable to assess the variability of ero-
sive responses due to singular rainfall–runoff events. Event-
based models require event-specific parametrization because
of a high sensitivity to initial conditions. Thus, requirements
for data quality in terms of accuracy and continuity are
higher (Jetten et al., 2003; Aksoy & Kavvas, 2005; Board-
man, 2006). This especially accounts for the parameters that
control infiltration, such as soil moisture and hydraulic
LAND DEGRADATION & DEVELOPMENT, 28: 1212–1227 (2017)
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Table IV. Erosion (Ero.) and deposition (Dep.) rates according classes (severe:>50Mgha�1, high: 20–50Mgha�1, moderate: 10–20Mgha�1,
low: <10Mgha�1) for different land uses (ha)

Land use Area (ha) Ero. (Dep.) (%)
Ero. (Dep.)
severe (%)

Ero. (Dep.)
high (%)

Ero. (Dep.)
moderate (%)

Ero. (Dep.)
low (%)

Corn-rapeseed 47.8 69.2 (13.6) 26.1 (1.3) 10.3 (3.6) 2.3 (3.2) 30.5 (5.5)
Potato-cabbage 19.4 69.1 (11.3) 29.9 (0.5) 8.8 (4.6) 3.1 (2.1) 27.3 (4.1)
Grassland 6.0 5.0 (18.4) �(8.3) �(1.7) �(1.7) 5.0 (6.7)
Mixed forest 340.4 0.5 (9.7) �(1.4) �(0.8) �(0.6) 0.5 (6.9)
Built 15.1 - (41.7) �(10.6) �(6.6) �(4.0) �(20.5)
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conductivity (Schmidt et al., 1999; Jetten et al., 2003; Shen
et al., 2010). Particularly in the TGRA, where major sedi-
ment reallocations are due to very few extreme events, the
event-based assessment is of substantial interest in context
of implementing erosion control measures to prevent haz-
ardous impacts (Cai et al., 2005; Fang et al., 2013).
Continuous runoff data and discontinuous sediment yield

data from the outlet were available for both model attempts
by Shen et al. (2010) and Shi et al. (2012). The data was used
to calibrate the WEPP model, while WaTEM/SEDEM was
parametrized by available RUSLE data. Both studies were
validated by the outlet data. In the present study, we used
continuous data on runoff and sediment yield, therefore pro-
viding an increased data consistency. Model calibration was
enabled by using DSM techniques to calculate high-
resolution soil property information. Thus, DSM provided a
solution to enable the parametrization of a physically and
event-based erosion and deposition model at catchment scale
in a generally data scarce environment (Stumpf et al.,
2015a). Further model parameters were based on land use
data derived from satellite images and an empirically com-
piled parameter catalogue (Michael, 2000). Only the sensi-
tive soil moisture parameter was adjusted using observed
and predicted runoff data, a procedure that is commonly ap-
plied in event-based erosion modelling (Schmidt et al., 1999;
Jetten et al., 2003). Similar to the WaTEM/SEDEM and
WEPP approach in the TGRA (Shen et al., 2010; Shi et al.,
2012), model performance of the presented approach was
assessed using outlet data on sediment yield. However, be-
cause of the variability in the sediment delivery ratio with
changing temporal and spatial scale, sediment yield data
have been criticized for field erosion measurements
(Boardman, 2006). Nevertheless, the assumption of a stable
and high sediment delivery ratio is reasonable, because the
cause–effect relationship between the monitoring data (rain-
fall, runoff, sediment yield) is strong (r> 0.8), and erosive
events are mainly due to high intensity rainfall events that
are reported to cause high sediment connectivity (Lexartza-
Artza & Wainwright, 2011; Baartman et al., 2013; Todisco,
2014; Marchamalo et al., 2015).
Both physically based model attempts in the TGRA (Shen

et al., 2010; Shi et al., 2012) showed acceptable average
model accuracies with NS=0.65 for the WaTEM/SEDEM
approach and NS=0.84 (average deviation: 3.9%) for the
WEPP modelling. Contrary, the presented study, using
EROSION 3D, exhibited an increased average accuracy of
Copyright © 2016 John Wiley & Sons, Ltd.
NS=0.98 and a decreased average deviation of 2.3 over all
modelled events. Moreover, because EROSION 3D is
event-based, we also derived event-specific accuracies. We
detected ambiguous model performances between small
events (<1Mg; ERRaverage = 36.2%) and large events
(>1Mg; ERRaverage = 7.5%).The increasing model perfor-
mance for large events is in agreement with other event-
based model attempts (Zhang et al., 1996; Nearing et al.,
1999; Nearing, 2000; Gumiere et al., 2011; Lee et al.,
2013). In this context, Jetten et al. (2003) argued that
small-scale events are generally difficult to simulate because
the deterministic character of erosion models is incapable to
deal with the random component of measured data. Board-
man (2006) relates the low accuracy of small-scale events
to oversimplified runoff routines, which solely simulate run-
off by infiltration excess and thereby underrating the erosive
power of low intensity rainfall on saturated soil. Moreover,
the decreased sediment connectivity of low intensity rainfall
could cause variability in the outlet data, and therefore lead-
ing to biased estimation (Marchamalo et al., 2015).
For the WaTEM/SEDEM approach, ‘severe’ and ‘high’

erosion occurred on 10.5% of the study area with an average
erosion rate of 13Mgha�1. Deposition was detected on
20.5%, while no classification on magnitude was conducted
(Shi et al., 2012). For the WEPP approach, the average ero-
sion rate ranged between 2 and 38Mgha�1, while quantita-
tive information on proportional areas of erosion and
deposition was not provided. In the presented study, ‘severe’
and ‘high’ erosion was found on 5.7% of the study area,
while 11% were occupied by deposition. The average ero-
sion rate is 49.9Mgha�1, calculated over the erosion area
and using the budget of the modelled events that account
for 80.3% of the total sediment yield (Table V).
Other model-based erosion studies within the TGRA ap-

plied the empirical RUSLE, the semi-empirical SWAT
model or radionuclide inventories of (C137) in various scales
(Quine et al., 1999; Lu & Higgit, 2000; Shi et al., 2004; He
et al., 2007; Zhang, 2008; Strehmel et al., 2015). The esti-
mated erosion rates ranged between 26Mgha�1 a�1 and
76Mgha�1 a�1. Because the average erosion rate of the pre-
sented study lies within the range of other erosion studies in
this region, the applied approach can therefore be considered
as reliable. However, the comparability of erosion rates is
limited because of scale-dependency in terms of space and
time, a variety of measurement methods and the complex re-
lationship between environmental factors and erosion
LAND DEGRADATION & DEVELOPMENT, 28: 1212–1227 (2017)



Table V. Model-based erosion studies in the Three Gorges Reservoir Area, based on physical (EROSION 3D, WaTEM/
SEDEM, WEPP), semi-empirical (SWAT), empirical (USLE/RUSLE) and radionuclide inventory (C137) methods

Method Area (ha) Average erosion rate (Mg ha�1 a�1) Reference

EROSION 3D 429 49.9 presented study
WaTEM/SEDEM 1,670 13.2 Shi et al., 2012
WEPP 162 2–38 Shen et al., 2010
SWAT 162 27.0 Shen et al., 2009
USLE 2.3*106 32.8 Zhang, 2008
RUSLE 3.2*105 52–76 Strehmel et al., 2015
RUSLE 162 26–52 Shi et al., 2004
C137 70 45.0 Lu & Higgitt, 2000
C137 0.21 51.5 Quine et al., 1999
C137 1.1*108 24.2 He et al., 2007
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(Boardman, 2006; De Vente et al., 2007; Cantón et al.,
2011; Vanmaercke et al., 2011; García-Ruiz et al., 2015).
In this context, García-Ruiz et al. (2015) compiled a data
base of erosion rate studies from more than 4,000 sites
worldwide and analyzed the data on their relation to
(non-) environmental factors. The meta-analysis revealed
general trends of positive relations to factors such as
slope, annual precipitation and land use. However, the re-
sults showed high variability because the included studies
comprised various spatial scales, durations of the experi-
ments and methods. Moreover, García-Ruiz et al. (2015)
argued that insufficient descriptions of study areas,
methods and results further exacerbate the comparability
of erosion studies.

Sediment Reallocation and Landuse

This study investigates rainfall-triggered sediment
reallocations to enable sustainable land management at
catchment scale. However, the sedimentological response
of a landscape is complex, because it depends on a variety
of interacting physical processes, which are related to topog-
raphy, climate, soil and vegetation among others (Martínez-
Mena et al., 1998; Cammeraat, 2004; Puigdefábregas, 2005;
Bracken & Croke, 2007; Bautista et al., 2007; Bochet, 2015;
Certini et al., 2015; Marchamalo et al., 2015).
The quantification of the landscape response is increasingly

achieved using the concept of landscape connectivity, which
describes the water-mediated sediment fluxes within a catch-
ment (Bracken &Croke, 2007; Lexartza-Artza &Wainwright,
2011; Fryirs, 2013). López-Vicente et al. (2015) coupled the
modified RMMF soil erosion model (López-Vicente &Navas,
2010) with the IC model of sediment connectivity (Borselli
et al., 2008) to map potential sediment reallocations.
Marchamalo et al. (2015) presented a method to identify
hotspots of sediment sources, deposits and their linkages by
repeatedly field mapping after rainfall events. Keesstra et al.
(2009) combined field surveys, site-specific expert knowledge
and a sediment delivery model to establish a detailed sediment
budget. However, the aforementioned approaches are accom-
panied by extensive field work, because detailed data on land-
scape features related to connectivity are difficult to derive
from DEMs and remote sensing images (Marchamalo et al.,
2015; Lesschen et al., 2009).
Copyright © 2016 John Wiley & Sons, Ltd.
In contrast, the presented approach outlines a modelling
framework of automated field monitoring and DSM tech-
niques to calibrate a physically and event-based soil erosion
model. The framework reduces efforts for field work and is
applicable in data scarce and highly dynamic environments.
However, the validation by outlet data only addresses over-
all model accuracy, while an uncertainty assessment of the
modelled sediment reallocations is limited (Jetten et al.,
1999; Boardman, 2006).
Nevertheless, the spatial results of the presented model-

ling approach are in agreement with data on average soil loss
rates of main land use types in southern China (Hill & Peart,
1998; Huang et al., 1998; Xiang et al., 2001; Gao et al.,
2004; Zheng & Zhang, 2006; Guo et al., 2015). The data
are based on plot-scale studies, from which an average soil
loss rate of 0.38Mgha�1 a�1 for the land use type ‘forest’,
5.5Mgha�1 a�1 for ‘grassland’ and 35.4 t ha�1 a�1 for
‘cropland’ were identified. According to a review of Hill &
Peart (1998), average soil loss in southern China amounts
to 0.1Mgha�1 a�1 for ‘forest’, 2.4Mgha�1 a�1 for ‘grass-
land’ and 62.4Mgha�1 a�1 for ‘cropland’. In the present
study, we found erosion on the land use classes ‘corn-
rapeseed’ and ‘potato-cabbage’, while both land use classes
were classified as ‘severe’(>50Mgha�1) for approximately
one third of the specific land use area (Table IV).
In addition, Takken et al. (1999) mapped erosion patterns

and calculated the erosion rate after an extreme rainfall event
for different land use types in a small catchment in Belgium.
The results confirm the aforementioned erosion rates with no
erosion for ‘forest’, 0.2Mgha�1 for ‘grassland’, 53.0Mgha�1

for ‘potato’ and 76.0Mgha�1 for ‘corn’. Moreover, Takken
et al. (1999) found deposition on 3.5% of the study area, while
major deposition zones were concentrated along the
topographical depression lines, at field borders with high
vegetation, and on roads. These results are generally
confirmed by the present study, while deposition occurred
on each land use class, but concentrated in topographic
depression lines and on infrastructure (Figure 4; Table IV).
The modelled erosion patterns of the present study

demarcate areas of ‘severe’ soil loss in the north and
smaller patches in the central and southern part of the
catchment. These areas display the major sediment sources
and indicate increased sedimentological connectivity
LAND DEGRADATION & DEVELOPMENT, 28: 1212–1227 (2017)



1224 F. STUMPF ET AL.
(Verstraeten et al., 2006; Marchamalo et al., 2015). The
results support the implementation of erosion control
measures to mitigate soil degradation and hazardous effects
for human livelihood in the TGRA (Xu et al., 2013; Ferreira
et al., 2015). In this context, López-Vicente et al. (2013)
suggests to stabilize surfaces and reduce sediment
connectivity by establishing cropland terraces to retain
eroded sediment and an increasing vegetation cover,
particularly in periods of high intensity rainfall.
CONCLUSIONS

In this study, we analyzed sediment reallocations because of
erosive rainfall events in a data scarce and small catchment
of the TGRA in China. Thus, we set up a methodological
workflow to parametrize EROSION 3D as a modelling tool
to spatially identify sediment sources and deposits. Model
parametrization was accomplished by using DSM tech-
niques, land use maps based on satellite data and a parame-
ter catalogue. Calibration data on rainfall, runoff and
sediment yields were representative for the region and
showed a strong cause–effect relationship. The majority of
the total sediment yield was attributed to only six large ero-
sive events. Erosion 3D performed well for large events,
while small events showed high uncertainties. We detected
high erosion rates on cropland, particularly on crop rotation
areas of ‘corn-rapeseed’ and ‘potato-cabbage’. The major ar-
eal proportions of deposition were attributed to the land use
classes ‘built’ and ‘grassland’. In summary, we presented an
efficient methodological outline to meet the complex data
requirements of a physically and event-based erosion model.
Considering that the major sediment yields in the region are
associated to a few large events, EROSION 3D can be rec-
ommended to identify sediment reallocations and relevant
sites for erosion control measures in small catchments.
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