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Chapter 1

General introduction



Chapter 1. General introduction

1.1 Background

We constantly require information on our surrounding environment. We wonder
how much rain we had during the day, we want to know whether our soil is fertile
so as to plant a vegetable garden. Most of our questions can be answered via simple
observing. One may look at the sky and identify dark clouds or analyse whether
the current garden vegetation �ourishes. In many cases, this will give su�cient
information to answer our questions.

In other circumstances, such as for space-time monitoring and prediction of envi-
ronmental variables, quantitative environmental information is needed. Whether
we are regulators who want to assess over time the increase of the river discharge
after a rainfall event or policy makers who want to know the daily rate of nitrogen
dioxide emission in the city’s air and its consequences in terms of public health,
real-world measurements are needed to obtain the required information. Scientists
can provide such information by inspecting and measuring the environment. But
environmental variables cannot be measured everywhere. We cannot measure the
rainfall at every single point in space and time and we cannot continuously measure
the nitrogen dioxide concentration everywhere in a city. Instead, scientists can col-
lect a fragment, one or several units of the environment, with the purpose of using
these units as reference values for the whole area to be studied.

Di�culties arise when collecting a single unit from a spatially varying variable
(Webster and Lark, 2012). First, one may collect the unit in a location where the
variable of interest exhibits abnormally large or small values. For example, moni-
toring the carbon dioxide concentration of the air of a city may give extremely high
pollution concentration when measured near a ring road. This may persuade policy
makers to limit severely the tra�c within the city, which may in turn restrict un-
reasonably the local economy. In contrast, a monitoring station placed on the top
of a building may provide too small values of the city air pollution, and not exhort
actions against dangerous carbon dioxide concentration for the population. Second,
even if the collected unit does not show an atypical value, one may want to map
the environmental variable. The air is likely to be more polluted close to the city
roads and less within the city largest parks. There might be a few local conditions
boosting the carbon dioxide concentration. Collecting one single unit is not a realis-
tic option in practice as it enables neither mapping nor estimating statistics related
to the spatial variation of the variable of interest. We need replication of the sam-
pling at multiple locations for mapping a target variable (Lark, 2003), i.e. collecting
a sample of multiple units. In this thesis I am interested in mapping environmental
variables and so it is evident that the sample must contain multiple units.
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1.2. Problem de�nition

A sample is a set of units collected from the whole population. In this thesis a sam-
pling unit is a point-location in the two-dimensional geographical space. Replication
involves measuring the target variable at multiple locations in space. Collecting a
sampling unit might be very costly and time consuming. For instance, this is the
case in the mining industry, where an individual mechanized borehole costs several
thousands of euros. In fact, the ground might need to be drilled for several days
to retrieve a single unit at great depth. One can avoid unnecessary spending by
collecting the smallest number of units needed for a precision requirement or the
largest number that can be a�orded for a given sampling budget. These units must
then be optimally selected in space so as to optimize a criterion related to the target
variable and its intended use.

1.2 Problem de�nition

1.2.1 What is optimal?

A design is optimal with respect to a criterion. In this thesis, I de�ne a criterion as
a mathematical quanti�cation of the quality of a sampling con�guration. Its eval-
uation gives information on whether one sampling con�guration is better than an-
other. For example, a farmer who wishes to assess the topsoil carbon content of his
�eld may wish to sample evenly in space. In this case, a bad design is a design in
which the units of the sample are taken at close locations one to another, while a
good design is found when sampling uniformly over the �eld. In this case, a cri-
terion that evaluates the quality of a design should quantify the overall dispersion
of the units in space. As the criterion is quantitative, it can be either maximized
or minimized using optimization algorithms (Ehrgott, 2005). An optimized value of
the criterion serves for �nding the optimal spatial sampling design. In fact, a single
criterion may not cover all di�erent expected qualities of a sampling design, due to
contrasting and sometimes con�icting de�nitions of what makes a suitable design
(Sawicka et al., 2017). In some cases, the formulation of the criterion itself con-
tributes to the understanding of the problem (Van Groenigen et al., 1999). Another
di�culty arises when the formulation of the design quality is qualitative and sub-
jective, making the translation of the objectives into a mathematical, quantitative
criterion di�cult (Lophaven, 2004).

From the above, I de�ne a sample of size n with sampling con�guration ξ =

{s1, s2, . . . , sn} where si are geographic locations in the area of interest A. The
optimal sampling con�guration (i.e. optimal design) is found through evaluation of
the criterion for all possible sampling con�gurations. The optimal sampling con�g-
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Chapter 1. General introduction

uration ξ ∗ is the one achieving the smallest value of the criterion. Thus, the choice
of the criterion re�ects the purpose of the optimization and determines the resulting
optimized design (Mateu and Müller, 2012). I acknowledge that this assumes that
there is one unique optimized sampling con�guration, because of the model-based
setting. This is explained later in this chapter.

1.2.2 Constraints on the design

Candidate locations for sampling can be selected anywhere inA. In practice, how-
ever, one may want to constrain this choice by avoiding to select sampling units
at unreachable locations or that are very expensive to collect. Typical constraints
are budgetary ones, where the sample size cannot exceed a certain limit. Cost can
be accounted for by penalizing the sampling locations that are expensive to reach
(Roudier et al., 2012), or by accounting for �eldwork, �eld equipments and labora-
tory costs (Brus et al., 1999). Operational constraints may lead decision making, by
placing emphasis on accessibility or easy maintenance of the monitoring stations
(Changnon et al., 1980). Constraints can also be related to subjective decisions in
order to favour areas of speci�c ecological interest (Asadollahfardi, 2015). The above
constraints commonly set limits on the spatial design for which the mathematical
criterion is evaluated.

1.2.3 Criteria for mapping cost and accuracy

The quality of a design is evaluated based on two main types of criterion assessing
either mapping cost or mapping accuracy. Designs optimal in term of mapping costs
are often found by minimizing a function of the sample size or sampling unit accessi-
bility as a surrogate of the total sampling costs, with respect to a map accuracy mea-
sure (Yang et al., 2018; Brus et al., 2019). Examples of such designs can for example
be found in ecology (Lugg et al., 2018), soil science (Brungard and Boettinger, 2010)
and hydrology (Nunes et al., 2004). Mapping costs have been minimized jointly with
mapping accuracy in a multi-criteria optimization (Pardo-Igúzquiza, 1998). The au-
thors used a trade-o� parameter weighing the separate contribution due to costs of
installing new meteorological stations and to variance reduction achieved by adding
more stations. During the last decade, much focus has been put on criteria to comply
with high mapping accuracy. The most used is the spatially averaged prediction er-
ror variance, �rst used in the 80’s (Delhomme, 1978; Bastin et al., 1984) and common
nowadays (Brus and Heuvelink, 2007; Barca et al., 2015; Ge et al., 2015). This crite-
rion is eventually combined with the error associated to computing a trend (Hengl
et al., 2003), or a covariance structure (Russo, 1984; Müller and Zimmerman, 1999) in
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1.2. Problem de�nition

a weighted multi-criteria optimization (Müller and Stehlík, 2010). Other possible cri-
terion are the false discovery rate for remediation of contaminated areas (Marchant
et al., 2013), the calamity detection capability of a network (Melles et al., 2011), the
false classi�cation into safe and unsafe zones due to radioactive plume (Heuvelink
et al., 2010), or the mean squared shortest distance between sampling locations. The
latter leads to a geometric design (Brus et al., 2007).

1.2.4 Sampling strategies

Some of the mentioned criteria need a model of spatial variation to be computed.
This relies on the model-based statistical inference strategy decided upon. De Grui-
jter et al. (2006) distinguish two sampling approaches, namely the model- and the
design-based approaches. Design-based sampling is based on classical sampling the-
ory, wherein the sampling units are selected randomly in such a way that every ele-
ment of the population has a given probability of being selected (Cochran, 1977). In
this thesis I use solely non-probability sampling designs, as they are generally more
suitable for mapping (De Gruijter et al., 2006). Non-probability sampling designs
comprise among others regular grid sampling, spatial coverage sampling, feature
space coverage sampling using k-means, conditioned Latin Hypercube sampling, re-
sponse surface sampling, Kennard-Stone sampling and model-based sampling (Brus,
2019). This thesis focuses mainly on model-based sampling, in combination with a
model-based inference strategy for mapping, even if the former does not necessarily
imply the latter (De Gruijter et al., 2006). In reality, environmental variables are the
outcome of a deterministic rather than a random process (Webster, 2000). In prac-
tice, however, we proceed by assuming the variable to be the outcome of a random
process, as assumed in geostatistical inference. The spatial variation of the variable
is described by a stochastic model which opens the possibility for optimized, model-
based (purposive) sampling so as to make inference on the assumed geostatistical
model. This is the model-based geostatistical mapping mentioned in the previous
paragraphs of this Introduction.

1.2.5 Geostatistical mapping

Model-based inference using geostatistics is a sub-branch of spatial statistics in-
troduced in the early 1960s by Matheron (1963) to study the spatial distribution of
regionalized variables. I �rst de�ne the sampling location of the units s1, s2, . . . , sn
and a random �eld Z modeled by Z (s) = µ + ε(s)where µ is the mean and ε is a zero
mean random process with covariance cov(ε(si ), ε(sj )) = C(|si − sj |). This statistical
representation of the reality is based on a set of assumptions, the most important
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Chapter 1. General introduction

ones being �rst-order stationarity, i.e. the unknown mean µ is constant over the
area A, and second-order stationarity, i.e. the covariance of the random process
at two locations is independent of their spatial locations and depends only on the
geographic separation distance and direction between them.

The next step relies on the de�nition of the structure of the spatially correlated resid-
ual ε with correlogram ρ(h;θ ), where h is the separation distance between units.
Since µ is constant, ρ(h) is speci�ed by the covariance function C of Z so that the
correlation function ρ(h) = C(h)/C(0). The parameter vector θ of the model ρ(h;θ )
can be either assumed to be known, taken from a correlogram whose parameters are
already estimated from the same variable in similar conditions, or �tted using sam-
ple data by parameter estimation methods such as methods-of-moments, maximum
likelihood (ML) or restricted maximum likelihood (REML).

In the third and �nal step, values at non-measured locations can be predicted with
their associated prediction error variance. The core geostatistical prediction method
is known as kriging from the work of the mining engineer Danie Krige (Krige, 1951).
Kriging is a model-based method used in many di�erent �elds, such as in soil sci-
ence, meteorology, epidemiology and mineral resources evaluation. A large number
of kriging variants have been adopted to face the di�erent natural processes. Kriging
with external drift (KED) relaxes the �rst-order stationarity assumption by replac-
ing µ by a trend model, so that µ(s) = ∑K

k=0 βkдk (s) (Goovaerts, 1997). Indicator
kriging models binary responses I (s) (Solow, 1986) while disjunctive kriging deals
with non-linear estimation based on f (Z (s)), an arbitrary function of Z (s) (Rendu,
1980; Webster and Oliver, 1989). Provision to address non-normality of the variable
of interest also exists, such as in lognormal kriging (Dowd, 1982).

1.3 Sampling design optimization

1.3.1 Conventional model-based case

The conventional approach for model-based sampling design optimization relies on
the underlying model of spatial variation that we assume. The random variables
Z (si ) and Z (sj ) are not independent, they are correlated as characterized by the
parametrized correlogram ρ(h;θ ). In the kriging system, prediction is made using
the sample values and the covariance function by minimization of the prediction
error variance under the constraint of unbiasedness (Goovaerts, 1997). This allows
one to obtain not only the prediction of the variable at unvisited location, but also its
associated error variance. The latter might be used to formulate a criterion, which
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1.3. Sampling design optimization

depends on ξ and θ , quantifying the overall quality of the map:

criterion = 1
|A|

∫
s∈A

var
(
Z (s) − Ẑ (s)

)
ds . (1.1)

Several authors (e.g. Delhomme, 1978; Van Groenigen and Stein, 1998) noted that
estimation of the kriging variance depends on the variogram γ (h;θ ) and the sam-
pling design ξ , not on the actual sample values (McBratney et al., 1981; Brus and
Heuvelink, 2007). By knowing the variogram parameters θ , one may then compute
the kriging variance from a given sampling design before the actual data collection
in the �eld. Finding the optimal design is therefore simply the minimization of the
criterion with respect to ξ , for given parameters θ .

1.3.2 Optimization algorithms

A straightforward solution to the optimization problem is to evaluate all potential
sampling con�gurations exhaustively and select the one achieving the lowest cri-
terion value. This solution is tractable when the search space is small. In practice
this is often not the case and one may rather use a numerical search optimization
algorithm instead. In this thesis optimization of a criterion is always achieved by
minimizing that criterion. This is without loss of generality because maximizing a
criterion is the same as minimizing its opposite (i.e. the criterion multiplied with -1).
Several numerical optimizations can be adopted, such as greedy algorithms (Baume
et al., 2011), genetic algorithms (Behzadian et al., 2009), particle swarm optimization
(Jarboui et al., 2007), metaheuristic search (e.g. NSGAII by Deb et al., 2003) and sim-
ulated annealing (Kirkpatrick et al., 1983). In this thesis I essentially use the latter,
which was extended for spatial optimization by Van Groenigen and Stein (1998).

1.3.3 Spatial Simulated Annealing

Spatial simulated annealing (SSA) works by proposing new sampling con�gurations
based on a random perturbation of one unit of the sample. For each new design, the
criterion is evaluated and compared to that of the previous design. Sampling con�g-
urations that reduce the criterion are always accepted, con�gurations that increase
the criterion are accepted with a probability that is initially fairly large and decreas-
ing exponentially with the number of iterations. Thus, a worse sampling con�gu-
ration might be accepted, particularly at the beginning of the iterative procedure.
The process is repeated several thousands of times, which leads to a minimum (or
maximum) value of the criterion, associated to an optimized sampling design. In the

7



Chapter 1. General introduction

ordinary kriging case, this leads to a design in which the units are distributed fairly
evenly over the geographic space (Van Groenigen et al., 1999; Marchant, 2018), with
a few units at the boundary of the study area. Extension of the optimization for the
KED variance case leads to a distribution of the units according to both geographic
and predictors (i.e. covariates) space (Brus and Heuvelink, 2007).

1.3.4 Recent developments

Up to now, most sample optimization studies considered the standard kriging cases
reviewed above. But model-based geostatistics developed over time and new ad-
vances have emerged. The kriging prediction is based on the variogram, which is
characterized by a set of parameters. The latter are commonly estimated. This intro-
duces an additional source of uncertainty which can be added to the kriging predic-
tion error variance. This uncertainty has been quanti�ed in several studies in the last
decades, for example by Pardo-Igúzquiza and Dowd (2001), Ortiz and Deutsch (2002)
and Marchant and Lark (2004). Clearly, some sampling designs yield more accurate
variogram parameter estimates than others. Another key aspect in kriging is the
assumption of second-order stationarity. There is a recent trend towards relaxation
of the assumption of stationarity in the variance. Some contributions have been
made by Pintore and Holmes (2004), Lark (2009) and Fouedjio (2017). In some cases,
the assumptions pertaining to the kriging system may simply be avoided by using
machine learning models. They emerged as a valuable tool to make “assumption-
free” spatial prediction from large sets of environmental covariates (Grimm et al.,
2008; Hengl et al., 2015). Another development in recent years is that interpolated
maps can be used as input in dynamic environmental models and their associated
uncertainty propagated to the model output. This has been done e�ciently using
Bayesian uncertainty analysis (Kavetski et al., 2006; Huard and Mailhot, 2008; Re-
nard et al., 2011).

However, the implications of recent developments in geostatistical modelling for
sampling design optimization have not been thoroughly studied, although some so-
lutions have been found. Lark (2002), Zhu and Stein (2006) and Marchant and Lark
(2007a) optimized a sampling scheme for estimation of the variogram parameters.
More recently, Lark and Marchant (2018) showed that a sample optimized for mini-
mization of the covariance function parameter uncertainty and kriging variance can
be approximated by simply adding close-pair units to a spatial coverage design. Op-
timal designs for non-stationary variance models have also been documented, such
as by Atkinson and LLoyd (2007) and Marchant et al. (2009). These publications
show how a non-stationary variance model can be �tted, and how the latter can
be used for sampling design optimization. But they did not consider the case where
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multiple environmental covariates are available to model the variance. Sampling de-
signs for machine learning methods have been barely investigated. A contribution
has been made by Tuia et al. (2013), where a monitoring network is optimized using
a neural network and active learning. A thorough search of the relevant literature
yielded no further results concerning neither the optimization of sample patterns
for machine learning nor optimization of the input maps for Bayesian calibration
for a dynamic environmental model.

1.3.5 Objectives

I de�ne four topics, each aiming at addressing the optimal sampling design associ-
ated with a recent advance in geostatistical modelling and mapping. The objectives
comprise a set of research questions, which are addressed in this thesis.

1. Sampling optimization for a non-stationary variance model.
— How can a geostatistical model account for non-stationarity in the mean

and the variance?
— Does using a non-stationary variance model improve mapping accu-

racy?
— How can a sampling design of a non-stationary variance model be opti-

mized?
— What are the characteristics of the optimized design?

2. Optimal spatial coverage design while accounting for covariance parameter
uncertainty and kriging variance.

— What is a suitable criterion that accounts for both prediction error vari-
ance and covariance function parameter uncertainty?

— How accurate is a spatial coverage design compared to an optimized
design?

— Does allocating 10% of the samples at short distance improve the map-
ping accuracy?

— Can a spatial coverage design with close-pair units be recommended as
a robust strategy for mapping?

3. Sampling design optimization for mapping with random forest.
— Can a sampling design be optimized for mapping using random forest?
— What are the characteristics of the optimized design?
— How does the optimized design compare to commonly used sampling

designs?

9
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— Can recommendations be made on sampling strategies for mapping us-
ing random forest and other machine learning techniques?

4. Sampling density optimization for Bayesian uncertainty analysis of a rainfall
runo� model.

— Is it possible to include uncertainty about model input, model structure,
model parameters and output observations in a simple dynamic envi-
ronmental model?

— Does the input measurement density impact the model prediction un-
certainty?

— How does the input uncertainty interact with other sources of uncer-
tainty?

— Which recommendation can I provide on input measurement density,
while accounting for all sources of error in the calibration of a dynamic
environmental model?

I will test and illustrate the developed methods for case studies in soil science and
hydrology. By chronological order of the thesis chapters, the case studies are: (1) a
small agricultural area in the Hunter Valley, Australia, (2) a regional scale area in the
North of England, UK, (3) a synthetic case study, (4) 23 European countries covered
by the LUCAS dataset and (5) the Thur catchment in North-East Switzerland. While
in this thesis I focus on two �elds of natural sciences, the methods are applicable to
a wider range of application domains in the Earth and environmental sciences.

1.4 Thesis structure

The thesis is organized in seven chapters, including this introduction chapter. In
Chapter 2 the geostatistical framework to include non-stationarity in the mean and
variance is presented and applied to a soil science case study. The results are eval-
uated and compared to that of a stationary variance model. In Chapter 3 the non-
stationary variance model is used as a basis for sampling design optimization. The
design is optimized for predicting daily rainfall for a case study in England. Chap-
ter 4 presents a study where a spatial coverage design with close-pair units are com-
pared to that of a design optimized for the kriging variance and variogram uncer-
tainty. A synthetic study is presented as well as a case study using an average var-
iogram of soil clay. In Chapter 5 a European sampling design is optimally thinned
for mapping a soil variable using the random forest machine learning algorithm.
The spatial distribution of optimized designs is compared to that of commonly used
model-based sampling designs. Chapter 6 addresses optimization of the rain gauge
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sampling density for a dynamic rainfall-runo� model, while accounting for model
structural, initial state, model parameters and model output measurements uncer-
tainty. Chapter 7 gives the conclusion of this thesis and recommendations for future
research.

Chapters 2 to 6 can be read separately. Chapters 2 to 4 are published or accepted
peer-reviewed publications while Chapters 5 and 6 are submitted to refereed jour-
nals. Literature references for all chapters have been combined at the end of this
thesis.
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Chapter 2

Accounting for non-stationary variance in
geostatistical mapping of soil properties

Simple and ordinary kriging assume a constant mean and variance of the soil variable of interest. This
assumption is often implausible because the mean and/or variance are linked to terrain attributes, parent
material or other soil forming factors. In kriging with external drift (KED) non-stationarity in the mean is
accounted for by modelling it as a linear combination of covariates. In this study, we applied an extension
of KED that also accounts for non-stationary variance. Similar to the mean, the variance is modelled
as a linear combination of covariates. The set of covariates for the mean may di�er from the set for
the variance. The best combinations of covariates for the mean and variance are selected using Akaike’s
information criterion. Model parameters of the selected model are then estimated by di�erential evolution
using the restricted maximum likelihood (REML) in the objective function. The methodology was tested
in a small area of the Hunter Valley, NSW Australia, where samples from a �ne grid with gamma K
measurements were treated as measurements of the variable of interest. Terrain attributes were used as
covariates. Both a non-stationary variance and a stationary variance model were calibrated. The mean
squared prediction errors of the two models were somewhat comparable. However, the uncertainty about
the predictions was much better quanti�ed by the non-stationary variance model, as indicated by the
mean and median of the standardized squared prediction error and by accuracy plots. We conclude that
the non-stationary variance model is more �exible and better suited for uncertainty quanti�cation of a
mapped soil property. However, parameter estimation of the non-stationary variance model requires more
attention due to possible singularity of the covariance matrix.

Based on:
Wadoux, A. M. J.-C., Brus, D. J. and Heuvelink, G. B. M. (2018). Accounting for

non-stationary variance in geostatistical mapping of soil properties. Geoderma, 324,
pp.138-147.



Chapter 2. Accounting for non-stationary variance in geostatistical mapping of soil properties

2.1 Introduction

Standard geostatistical mapping approaches predict a soil variable of interest at the
unsampled nodes of a �ne grid using measurements of this variable at sampling
locations. In many cases predictions can be improved by exploiting a relation be-
tween the soil variable and one or more environmental covariates of which maps are
available, such as terrain attributes derived from a digital elevation model and re-
mote sensing images. This is usually done by modelling the soil variable as the sum
of a linear combination of covariates and a spatially autocorrelated residual. This
leads to kriging with external drift (KED) (Goovaerts, 1997). In situations where the
covariates explain a considerable part of the variation of the soil variable, KED is
superior to simple or ordinary kriging that both assume that the mean of the soil
variable is constant within a global or local neighbourhood and not dependent on
covariates.

In KED we allow for a non-stationary mean, but the variance is assumed station-
ary (i.e. constant). More speci�cally, it is assumed that the covariance between the
soil variable Z at two locations s and s + h only depends on the separation vector
h: cov(Z (s),Z (s + h)) = C(h). Taking h = 0 shows that the variance is assumed
constant: var(Z (s)) = C(0) for all s. However, in many cases the assumption of a
stationary variance may be implausible, i.e. when the residual spatial variation is
substantially di�erent in di�erent parts of the study area. For instance, McBratney
and Webster (1981) identi�ed several discontinuities in the variograms of soil colour
and pH along a transect in north-east Scotland. The authors attributed the changes
to boundaries between soil types. Similarly, Voltz and Webster (1990) found im-
portant di�erences between topsoil clay content variograms of contrasting Jurassic
sediments.

In some cases, non-stationarity in the variance can be solved by transforming the
data prior to geostatistical modelling, e.g. by a square-root or log-transformation
(e.g. Jacques et al., 1999). Several solutions have been proposed in case a transfor-
mation does not solve the problem. Pintore and Holmes (2004) and later Haskard
and Lark (2009) proposed to account for a non-stationary variance by spectral tem-
pering. The method tempers a spectrum based on a stationary correlation matrix,
but the modelled covariance structure can vary spatially while maintaining positive-
de�niteness. The authors showed that modifying the spectrum of the data according
to a covariate on a transect gave a more realistic variance model for a case study on
rates of emission of nitrous oxide from soils. Alternatively, McBratney and Minasny
(2013) proposed to equalize variogram parameters by deformation of the geographic
space. This method renders a stationary covariance function in the transformed
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2.2. Statistical methodology

space. Spatial predictions made in the transformed space are then back-transformed
to the original geographic space. However, while this approach addresses di�er-
ences in spatial correlation, it does not solve the non-stationary variance problem.

The work presented here builds on the work of Lark (2009) and Marchant et al.
(2009). They demonstrated how a model in which the variance is a function of the
spatial coordinate or covariates can be �tted by REML, and how such model can be
used in geostatistical prediction of soil properties. The same approach is applied by
Brus et al. (2016) in three-dimensional soil property mapping. They assumed that
the residual variance is a stepwise or continuous function of depth, while in the
horizontal plane, at a given depth, the residual variance was assumed constant.

The objective of this study is to test the approach proposed by Lark (2009) in a case
study where several covariates are available for modelling the non-stationarity of
the mean and variance. The best stationary variance model is compared with the
best non-stationary variance model, using evaluation criteria that measure both the
quality of the predictions as well as the quality of the estimated prediction uncer-
tainty.

2.2 Statistical methodology

2.2.1 Model de�nition

A soil variable of interest Z at any location s in the study area A is modelled by:

Z (s) =m(s) + σ (s)ε(s) (2.1)

where m(s) is the mean at location s, σ (s) the standard deviation at location s and
ε a stationary, spatially correlated Gaussian random �eld with zero mean and unit
variance. The meanm and standard deviation σ are deterministic functions that are
modelled as linear combinations of covariates, unconditional on the observations:

Z (s) =
K∑
k=0

βkwk (s) +
L∑
l=0

κlдl (s)ε(s) (2.2)

where the βk and κl are regression coe�cients (the latter are used for modelling
the standard deviation), and the wk and дl spatially distributed covariates. We take
w0(s) = д0(s) = 1 for all s, so that β0 and κ0 are space-invariant constant contribu-
tions to the mean and standard deviation, respectively.
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Let Z be measured at n locations si (i = 1, . . . ,n; si ∈ A). The measurements z(si )
are treated as realizations of the Gaussian �eld Z and prediction is done for Z at a
new, unobserved location s0. Stacking the z(si ) in a (column) vector z and changing
to matrix notation yields:

z =Wβ + Hε (2.3)

whereW is then×(K+1) design matrix of covariates for the mean at the observation
locations, β is the (K + 1) vector of regression coe�cients for the mean and ε is the
n-vector of (standardized) residuals, which has variance-covariance matrix R. H is
an n × n diagonal matrix de�ned by:

H = diag{Gκ} (2.4)

where G is then×(L+1)matrix of standard deviation covariates at observation loca-
tions andκ is an (L+1) vector of standard deviation regression coe�cients. Note that
while ε has variance-covariance matrix R, the stochastic component Hε of Eq. 2.3
has variance-covariance matrix C = HRH′. The parameters of the model de�ned by
Eq. 2.3 are β , κ and the parameters of a model for the spatial autocorrelation of the
standardized residual. In this work we will parametrize the spatial autocorrelation
by an isotropic exponential correlogram r (h) = r0{exp(−ha )} (where h > 0 is the
Euclidean distance between two locations, by de�nition r (0) = 1), thus introducing
two more parameters, namely r0 and a. Parameter r0 equals one minus the nugget-
to-sill ratio, while a refers to the spatial correlation length (or range, 3a being the
e�ective range). Note that the stationary variance model is a special case of the
non-stationary variance model. It is obtained by setting parameters κl , l = 1 . . . L to
zero, so that σ (s) = κ0 for all s.

2.2.2 Parameter estimation and model selection

Parameter estimation - In estimation the parameters are subdivided in two subsets,
the regression coe�cients β for the mean, and all parameters of the stochastic part
of the model, Φ = [κ , r0,a]. For a stationary variance model the second subset re-
duces to Φ = [κ0, r0,a]. The standard maximum likelihood estimates of Φ depend
non-linearly on the regression coe�cients for the mean β , which introduces a bias in
the estimates of Φ if both parameter subsets are estimated jointly (Lark and Webster,
2006). This problem can be avoided by restricted (or residual) maximum likelihood
(REML) parameter estimation. REML �rst estimates Φ and next β . Similar to stan-
dard maximum likelihood estimation, REML aims to �nd the vector Φ for which the
observed data yield the highest probability density (i.e. likelihood, if treated as a
function of the parameters instead of the data). The problem is that the likelihood
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of Φ depends on the regression coe�cients for the mean, which are unknown and
must also be estimated. Patterson and Thompson (1971) solved this problem by de-
trending the data by multiplying the data vector by a projection matrix. The new
variable is a function of the original variable but independent of the regression co-
e�cients for the mean. The associated restricted log-likelihood function is given by
(Webster and Oliver, 2007):

Lr (Φ|z) = constant − 1
2 log |C| − 1

2 log |W′C−1W| − 1
2z
′P′C−1(I − Q)z (2.5)

where I is an identity matrix and P and Q are de�ned as:

P = I −W(W′W)−1W′ (2.6)

Q =W(W′C−1W)−1W′C−1 (2.7)

After estimating Φ by maximizing the restricted log-likelihood given in Eq. 2.5
above, the regression coe�cients β for the mean can be estimated by generalized
least squares (GLS):

β = (W′C−1W)−1W′C−1z (2.8)

Here, matrix C is computed from the optimized values for Φ. Note that the regres-
sion coe�cients κl in Eq. 2.2 can be positive or negative, as long as the covariance
matrix C is not singular.

Model selection - Two subsets of covariates must be chosen, one for the mean and
one for the standard deviation. Suppose we have in total K candidate covariates
for modelling the mean. For a subset of covariates of size k , there are

(K
k

)
possible

combinations. Since the size is not �xed, we have
∑K

k=0
(K
k

)
possible models in to-

tal for the stationary variance model. Using the same set of candidate covariates
for the standard deviation, for the non-stationary variance model the total number
of models equals

(∑K
k=0

(K
k

) )2
. Ideally, all model combinations are �tted and com-

pared. Models with di�erent sets of covariates for the mean cannot be compared
on the basis of the restricted log-likelihood, because this is a function of just the
covariance parameters Φ. Models can better be compared on the basis of the stan-
dard log-likelihood, using a likelihood ratio test or by comparing quality measures
that are functions of the log-likelihood and the number of model parameters. Com-
mon quality measures are the Akaike information criterion (AIC, Akaike, 2011) and
Bayesian information criterion (BIC, Kass and Wasserman, 1995). AIC, used in the
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case study hereafter, is de�ned as:

AIC = 2p − 2 logL (2.9)

where p is the number of estimated parameters and L = p(z|β ,Φ) is the ordinary
log-likelihood, given by (Diggle and Ribeiro (2007b), Eq. 5.13):

L(β ,Φ|z) = −1
2n log(2π ) − 1

2 log |C| − 1
2 (z −Wβ)′C−1(z −Wβ) (2.10)

The number of covariate combinations for the non-stationary variance model will
be very large, unless the number of covariates K is small. Often, one will therefore
resort to numerical search algorithms (e.g. greedy algorithms) to overcome large
computation times. In the case study presented in Section 2.3, the small number
of covariates K makes exhaustive search possible. Note that models are compared
based on the AIC using the ordinary log-likelihood, while prediction is made with
parameters estimated by restricted log-likelihood (Hoeting et al., 2006).

2.2.3 Kriging

Ignoring estimation errors in Φ allows us to use a standard result from universal
kriging (Webster and Oliver, 2007) to predict the soil variable of interest at a new,
unobserved locations s0:

ẑ(s0) = (c0 +W(W′C−1W)−1(w0 −W′C−1c0))′C−1z (2.11)

where w0 is a vector of covariates for the mean at the prediction location and c0 is
an n vector of covariances between the residuals at the observation and prediction
location. Note that these are covariances of the (unstandardized) residuals σ · ε and
thus depend on the standard deviation covariates дl (s0), their associated (estimated)
regression coe�cients κl and the correlogram of ε .

The associated prediction error is given by (Webster and Oliver, 2007):

var(Z (s0) − Ẑ (s0)) =(g(s0)′κ)2 − c ′0C−1c0

+ (w0 −W′C−1c0)′(W′C−1W)−1(w0 −W′C−1c0)
(2.12)

where (g(s0)′κ)2 is the variance of Z (s0). The �rst two terms on the right-hand side
of Eq. 2.12 quantify the prediction error variance of the residuals, while the last
term is the variance of the estimation error of the mean. Note that here we take
uncertainty about the βk into account, whereas uncertainty about the κl and vari-
ogram parameters r0 and a is ignored. Taking the latter uncertainties into account
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is beyond the scope of this work.

2.2.4 Quality of prediction and estimated uncertainty

Let there be (N − n) validation locations si , i = (n + 1) . . .N . In the case study dis-
cussed in Section 2.3, N is the number of nodes of a �ne grid covering the study area,
of whichn are used for model calibration and (N −n) for model evaluation. To quan-
tify the quality of the predictions we computed the mean prediction error (ME), root
mean squared prediction error (RMSE) and modelling e�ciency coe�cient (MEC).
The latter is derived as follows (Janssen and Heuberger, 1995):

MEC = 1 −
∑N

i=n+1 (z(si ) − ẑ(si ))2∑N
i=n+1 (z(si ) − z̄)2

(2.13)

where z̄ denotes the mean of the observations. MEC quanti�es the improvement of
the model made over using the mean of the observations as a predictor. MEC can
become negative, while its optimal value is one.

To evaluate the quality of the prediction error variance, we used the standardized
squared prediction error θ (Lark, 2000; Marchant et al., 2009):

θ (si ) =
(z(si ) − ẑ(si ))2

var(Z (si ) − Ẑ (si ))
, i = (n + 1) . . .N (2.14)

For a model giving unbiased predictions and correct estimates of the prediction error
variance, θ has a χ 2-distribution with one degree of freedom, so that the average
value of θ over all validation locations should be close to 1, while its median should
be close to 0.455.

Accuracy plots

Deutsch (1997) and Goovaerts (2001) proposed a visual assessment of the quality
of the estimated prediction uncertainty through a so-called accuracy plot. Since the
prediction error at each validation location si is normally distributed with zero mean
and known variance (i.e. the kriging variance given by Eq. 2.12), its cumulative dis-
tribution Fi is known too. From this one can easily compute for a given probability
p a symmetric interval around the predicted value through computing the (1-p)/2
and (1+p)/2 quantiles, and use these as the lower and upper bounds of a prediction
interval. This is done for a series of values for p. The proportion of validation loca-
tions at which the p prediction interval includes the observed value is then obtained
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by:

ξ̄ (p) = 1
(N − n)

N∑
i=n+1

ξ (si ;p) ∀p ∈ [0, 1] (2.15)

where ξ (si ;p) is given by:

ξ (si ;p) =
{

1 if F−1
i (si ; (1 − p)/2) < z(si ) ≤ F−1

i (si ; (1 + p)/2)
0 otherwise

(2.16)

A correct modelling of the uncertainty would entail that the proportion of validation
locations where the p prediction interval covers the observed value approximately
equals the nominal value p, for all values of p. These proportions are plotted in a
scattergram against p; such scattergram is referred to as an accuracy plot. Ideally,
the points in the accuracy plot are on the 1:1 line. The absolute deviation from this
line can be summarized by an integral, calculated as:

A =

∫ 1

0
|ξ̄ (p) − p |dp (2.17)

Ideally, A = 0 for a model that perfectly describes the uncertainty. Note that the
measure A does not separate over- and underestimation of the uncertainty. There-
fore we also derive PO , the proportion ofA that is above the 1:1 line (overestimation
of uncertainty), given by:

PO =
1
A

∫ 1

0
max{0, ξ̄ (p) − p}dp (2.18)

and PU , the proportion of A below the 1:1 line (underestimation of uncertainty):

PU =
1
A

∫ 1

0
max{0,p − ξ̄ (p)}dp (2.19)

Note that PO and PU sum to 1.

2.3 Case study

2.3.1 Study area and data

We tested the methodology in the 140 ha Scarborough area (Fig. 2.1), located in
the Hunter Valley, Australia. Elevation ranges from 86 to 144 m above sea level
with an average of 113 m. Radiometric gamma was surveyed using a vehicle-born
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Figure 2.1 – Scarborough study area in the Hunter Valley, Australia, with location
and values of gamma-radiomatric potassium at 100 locations.

passive gamma spectrometer. This yielded a raster �le of 10 m × 10 m resolution of
gamma-radiometric potassium (K) expressed in cps. The data collection procedure
is detailed in Stockmann et al. (2012).

We used the R package spcosa (Walvoort et al., 2010) to divide the area into 50
compact geostrata of equal size, from which we selected two locations per stratum:
one in the centre and one randomly. This resulted in a total of 100 sampling locations
for the whole area (out of 10,473 grid locations), shown in Fig. 2.1.

In addition to gamma K observations at the 100 sampling locations, three covariates
were derived from the 10 m resolution digital elevation model (DEM):

— Topographic wetness index (TWI) (Fig. 2.2b), which is the steady state wetness
index, based on Moore et al. (1993).

— Slope (Fig. 2.2c), which is the angle of inclination of the soil surface from the
horizontal, derived using a 3×3 window and the method of Zevenbergen and
Thorne (1987).

— Combined curvature (Fig. 2.2d), which is a combination of pro�le and plan-
form curvature, based on Moore et al. (1993).

2.3.2 Practical implementation

Parameter estimation and model selection - All covariates were centred on 0 and
scaled to a standard deviation of 1, to enable direct comparison of the associated
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(a)

(c)
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Figure 2.2 – Standardized covariates used in model selection: (a) DEM, (b)
topographic wetness index (TWI), (c) slope and (d) combined curvature.

regression coe�cients. The four candidate covariates chosen in Section 2.2.2 were
used to compute the best stationary variance model and the best non-stationary
variance model using the AIC criterion. Since there were only four candidate co-
variates the total number of models to be compared was only 16 for the stationary
variance model and 256 for the non-stationary variance model, allowing exhaus-
tive search. The global optimum of the restricted log-likelihood function was found
using di�erential evolution (Storn and Price, 1997), implemented in the R package
DEoptim (Ardia et al., 2015). The convergence threshold was �xed at 10−10. Calcu-
lations were done in parallel on a standard desktop with eight cores. REML estima-
tion of the model parameters for all combinations of covariates (272 models in total)
took approximately 35 hours. The standard deviation parameters were bounded to
large positive and negative values to speed up computation (intercept between -
50 and 50 and coe�cients between -100 and 100). Likewise, variogram parameters
were constrained within plausible ranges (the short distance correlation parameter
r0 was forced between 0 and 1 and the correlation length parameter a between 0 and
one-third of the extent of the study area). In addition, any proposal combination of
parameters in DEoptim that resulted in a near-singular or singular C matrix was
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Table 2.1 – Estimated coe�cients for the mean and standard deviation and variogram
parameters for the stationary variance and non-stationary variance models.

Parameter Associated with Estimated value
Stationary variance model
β0 (cps) Intercept for the mean 29.948
β1 (m) Elevation −1.688
κ0 (-) Standard deviation 11.98
r0 (-) Short-distance correlation parameter 1.000
a (m) Range parameter 149.2
Non-stationary variance model
β0 (cps) Intercept for the mean 27.274
β1 (%) TWI 4.583
κ0 (-) Intercept for the standard deviation 18.34
κ1 (m) Elevation 7.115
κ2 (%) Slope −2.161
r0 (-) Short-distance correlation parameter 0.999
a (m) Range parameter 544.0

rejected. This problem is discussed more extensively in the Discussion.

Kriging - Predictions were made with global point kriging on a 10 m × 10 m resolu-
tion grid, excluding the 100 observation locations. As far as we know there are no
existing R packages for kriging with non-stationary variance, so we implemented
this in our own R script. The R script and a test case are available in Sawicka et al.
(2017). The prediction to the 10,373 remaining grid cell centres (N − n) took less
than a minute on a standard desktop computer.

2.3.3 Results

Based on the procedure detailed in Section 2.2.2, elevation was chosen as a covari-
ate for the mean in the stationary variance model. For the non-stationary variance
model, TWI was chosen for the mean while elevation and slope were chosen as co-
variates for the standard deviation. Table 2.1 presents the estimated coe�cients for
the mean, standard deviation and variogram parameters for the two models. Re-
call that the covariates are standardized to allow comparison between regression
coe�cients. Elevation has a negative e�ect on the mean gamma K for the station-
ary variance model. The stationary variance model also indicates strong residual
spatial correlation at short distances (r0 equals one), but the correlation decreases
rapidly with distance (range parameter of 149.2 m for an area with an extent of
about 1,500 m in the East-West direction). The coe�cient for the mean of the non-
stationary variance model exhibits a strong positive relationship of gamma K with
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the wetness index (β1 of about 4.6). The sign of the standard deviation coe�cients
κ1 and κ2 show that their associated covariates are positively and negatively corre-
lated with the unconditional standard deviation, respectively. Elevation has a larger
impact on the standard deviation (κ1 = 7.115) but slope also has an important (neg-
ative) contribution (κ2 = -2.161). In contrast with the stationary variance model, the
range parameter of the non-stationary variance model is much larger (a = 544 m),
while having a similar short-distance correlation parameter.

Unconditional mean Kriging prediction
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Figure 2.3 – Maps of the unconditional mean and kriging prediction.

The maps of the (unconditional) means show large di�erences between the two
models, both in terms of the magnitude of spatial variation and the spatial pat-
tern (Fig. 2.3). There is more spatial variation on the map obtained with the non-
stationary variance model. The di�erence in spatial pattern is due to the use of
di�erent covariates: elevation was used for the stationary variance model and wet-
ness index for the non-stationary variance model. Despite the large di�erences in
unconditional mean, the kriging prediction maps obtained with the two models are
quite similar (Fig. 2.3). They have comparable ranges of predicted values and a sim-
ilar spatial pattern. The non-stationary variance model exhibits greater �ne-scale
detail than the stationary variance model.
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Figure 2.4 – Maps of the unconditional standard deviation and kriging standard
deviations.

The spatial patterns of the unconditional standard deviation maps of the two models
are clearly di�erent (Fig. 2.4). The unconditional standard deviation of the station-
ary variance model is constant (equal to 11.98), while for the non-stationary vari-
ance model it varies smoothly through the area with high values in the East and
low values in the West. The higher values are about �ve times greater than the
low values, which clearly indicates that gamma K has non-stationary variance. The
standard deviation shows a spatial trend due to the prominent e�ect of elevation,
see Fig. 2.2a. This is re�ned at the local scale by the slope, where a large slope value
leads to a smaller standard deviation (such as the two patches in the south of the
area in Fig. 2.2c and Fig. 2.4). The kriging standard deviation map of the station-
ary variance model has a familiar pattern with circular areas around observation
locations with relatively low values. Uncertainty quickly increases with distance
from the sampling locations because of the small range parameter (Table 2.1). The
kriging standard deviation map of the non-stationary variance model shows the
combined e�ect of the East-West standard deviation trend and the circular areas
with low values near observation locations. On average, the kriging standard devi-
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ation of the non-stationary variance model is considerably smaller than that of the
stationary variance model (see the mean kriging variance (MKV) in Table. 2.2). This
is con�rmed by the θ statistics, which suggest that the stationary variance model
severely overestimates the true uncertainty (see Section 2.3.4 below). For compar-
ison, Fig. 2.5 shows a map of the local variance of the observation residuals of the
non-stationary variance model.

Local
variance

100

200

Figure 2.5 – Local variance of the observation residuals of the non-stationary
variance model, calculated using twelve nearest neighbour observations as

implemented in the R package RANN (Arya et al., 2017).

2.3.4 Quality of predictions and prediction error variance

Table 2.2 shows that the log-likelihood (Eq. 2.10) of the non-stationary variance
model is larger than that of the stationary variance model, while the AIC (Eq. 2.9)
is smaller despite the larger number of model parameters. The non-stationary vari-
ance model provides a lower model e�ciency measure (MEC of 0.692 against 0.714
for the stationary variance model) and a slightly larger accuracy measure (RMSE
of 6.18 against 5.96 for the stationary variance model) but with a ME almost 20%
smaller. This implies that the variance of the non-stationary variance model error
is larger, because the mean squared error is the sum of the variance and the squared
mean error.

The mean of θ (standardized squared prediction error) is closer to 1 for the non-
stationary variance model. Figure 2.6 shows the spatial pattern of the mean of θ for
both models, computed using a local window. The mean θ of the stationary variance
model has a clear spatial pattern, with an strong underestimation of the variance in
the eastern part and a overestimation in the western part of the area. The pattern
is much more smoothed for the non-stationary variance model, even though there
remains a slight underestimation of the variance in the mid-eastern part of the area.
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(a)

1

2

3

(b)

Figure 2.6 – Maps of the local mean θ for the (a) stationary variance model and (b)
non-stationary variance model, calculated using twelve nearest neighbour
observations and implemented with the R package RANN (Arya et al., 2017).

Table 2.2 – Performance indicators for the stationary and non-stationary variance
models.

Stationary variance model Non-stationary variance model
AIC 1667 756.2
Log-likelihood −828.4 −371.2
MKV 49.4 37.4
ME −0.84 −0.68
RMSE 5.96 6.18
MEC 0.714 0.692
mean(θ ) 0.718 1.126
median(θ ) 0.218 0.395
A 0.094 0.016
PO 1.000 0.914
PU 0.000 0.086

The median ofθ indicates a large improvement of the non-stationary variance model
over the stationary variance model. The 0.2184 value of the median θ for the station-
ary variance model indicates that this model seriously over-estimates the prediction
error variance. This is con�rmed by the accuracy plots (Fig. 2.7): prediction inter-
vals as obtained with the stationary variance model are too wide, leading to larger
absolute deviation from the nominal p values (the absolute deviation parameter A
of the stationary variance model is six times larger than that of the non-stationary
variance model). The over- and underestimation measures PO and PU show that for
both models the main problem is overestimation of the uncertainty, although the
mean θ and Fig. 2.7 suggest that for the non-stationary variance model, this is likely
a chance e�ect and not signi�cant. This problem is more severe for the stationary
variance model, where absolute deviation from the nominal p is almost entirely due
to overestimation of the uncertainty.
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Figure 2.7 – Accuracy plot for the stationary variance and non-stationary variance
models.

2.4 Discussion

For gamma K prediction, stationary and non-stationary variance models have very
di�erent unconditional mean maps. This is because di�erent covariates were se-
lected. Gamma K is linked to elevation for the stationary variance model and to
topographic wetness for the non-stationary variance model. This di�erence may
be explained by the large number of soil forming factors in�uencing spatial varia-
tion of gamma K. For example, Viscarra Rossel et al. (2007) showed that gamma K
is mostly determined by soil minerals and soil particle size, with some e�ects of soil
moisture and bulk density. In our case study, the area is covered by a wide range
of parent materials, such as lithic sandstone, siltstone, mudstone, shale, limestone
and volcanic rocks; as well as a large number of soil types such as Red Dermosols,
followed by Brown, Black and Grey Dermosols (Kovac and Lawrie, 1991; Stockmann
et al., 2012). These contrasting soil types and parent materials lead to large spatial
variation of soil mineralogy and soil particle size, as well as soil moisture charac-
teristics. None of these factors were directly included as a covariate, although each
may have a (complex) relationship with the four covariates included in this study.
It is therefore di�cult to draw conclusions regarding a possible causal e�ect of the
selected mean covariates on the gamma K distribution.

In spite of the apparent di�erences in the unconditional means between the two
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models, the �nal prediction maps were nearly the same and quite di�erent from the
unconditional means. This shows that in this study the kriging step is important.
It not only improves prediction accuracy but also compensates for the di�erences
made in modelling the unconditional mean, thus producing more robust predictions
that are less sensitive to choices made during the model selection process.

Elevation and slope were selected to model the standard deviation of the non-
stationary variance model. Elevation had a positive and slope a negative e�ect.
Apparently, residual variation is greater at high elevation and shallow slopes. Stock-
mann et al. (2012) notes that the top-of-hill vineyards were irrigated during the sur-
vey. This might have led to an increase of the local variance with elevation, since
TWI does not account for this unexpected arti�cial process (re�ected in Fig. 2.5).
The role of slope on the standard deviation is more di�cult to explain, and we do
not wish to speculate. In fact, many authors have noted that interpretation of em-
pirical digital soil mapping models is di�cult (e.g. Bishop and McBratney, 2001).
Recent work, such as by Angelini et al. (2017), have made a step towards “con-
scious” digital soil mapping, where the selection of covariates and their role within
the model are primarily based on a soil-landscape conceptual model. While this is
challenging for the mean, it is even more di�cult to explain how local soil spatial
variation (i.e. the standard deviation) is in�uenced by covariates. If non-stationary
variance models gain popularity in future digital soil mapping research, then pedo-
logical interpretation of the selected models, including the structure of the standard
deviation, requires attention.

For the case study, both models provide good predictive ability as shown by the ME,
RMSE and MEC. The spatial patterns of the prediction maps also closely resembles
those produced by others (e.g. McBratney and Minasny, 2013). In spite of the good
performance, the stationary variance model did not provide satisfactory results re-
garding uncertainty quanti�cation. The low median of θ and the accuracy plots
in Fig. 2.7 show that the stationary variance model systematically over-estimates
the local standard deviation for most prediction intervals, except at the tails (0.1
and 0.9 predictive intervals). This is not surprising as the study area reveals strong
non-stationarity (Fig. 2.5), which the stationary variance model cannot capture. The
non-stationary variance model is more �exible and can address local di�erences in
standard deviation. The median θ and accuracy plot statistics show that uncertainty
quanti�cation is signi�cantly improved using this model. Given the substantial dif-
ferences between the two kriging standard deviation maps shown in Fig. 2.4, this
has important implications, such as for uncertainty propagation (Heuvelink, 1998)
and sampling design optimization studies (Wadoux et al., 2017).

The non-stationary variance model did not improve the accuracy of the predictions.
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The RMSE of the non-stationary variance model is slightly greater than that of the
stationary variance model and the MEC is slightly smaller. The mean kriging vari-
ance is about 25% smaller, suggesting that the non-stationary variance model is more
accurate than the stationary variance model, but this merely re�ects that the sta-
tionary variance model systematically overestimated the uncertainty. The smaller
RMSE of the stationary variance model suggests that having a more �exible vari-
ance leads to slightly worse predictions. We investigated this by comparing results
of the non-stationary model with those of its sub-models (including the stationary
version). The results (not shown) con�rm that the non-stationary model provides
slightly worse predictions than its stationary sub-model. There is no obvious expla-
nation and this e�ect may be investigated more closely in future work.

While it was shown above that the assumption of a stationary variance was too
restrictive for the case study and produced an unrealistic model of the true spa-
tial variation of gamma K, the extension to a non-stationary variance model poses
additional problems. We used a model in which the standard deviation is a linear
combination of covariates. Parameter estimation and kriging require the inverse of
the covariance matrixC , which depends on the covariates through matrixH de�ned
in Eq. 2.4. Thus, C may become near-singular or even singular for speci�c combi-
nations of the standard deviation covariates, which leads to numerical instability.
Di�erent approaches may be used to avoid this problem. Inspired by Marchant et al.
(2009), Wadoux et al. (2017) propose to reject combinations of parameters suggested
by di�erential evolution if these lead to a reciprocal condition number smaller than a
given threshold. This seems to work �ne but it a�ects the search for optimal param-
eters in parameter space, which might lead to sub-optimal parameter combinations.
Alternatively, singularity might be tackled by making use of the generalized inverse
(Sen and Srivastava, 2012), since kriging is about solving a set of linear equations
which can also be accomplished using a generalized inverse. We have not investi-
gated this and used the method proposed by Wadoux et al. (2017) instead. Another
solution might be to model the log-transformed standard deviation as a linear com-
bination of covariates (as in Pintore and Holmes, 2004). This would assure that the
standard deviation is positive regardless of the parameter values. We explored this
approach by taking σ (s) = e

(∑L
l=0 κlдl (s)

)
and re-estimating the parameters on the

log-scale. We observed that a slight change in a parameter value may lead to a large
change in the standard deviation. The estimated standard deviation therefore be-
came very unstable and near-singularity still occurred. Thus, we did not pursue
this any further.

In this work, uncertainty about the mean regression coe�cients was accounted for
in the second term of Eq. 2.12, while uncertainty about the standard deviation coe�-
cients and correlogram parameters was ignored. This may lead to under-estimation
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of the actual “true” uncertainty. Taking uncertainty about the correlogram parame-
ters and standard deviation regression coe�cients into account is possible, although
it complicates the analysis. One possible approach is described in Lark (2002) and
Marchant and Lark (2007a). The authors use the derivative of the kriging predic-
tion error variance and kriging weights with respect to the variogram parameters
to infer a map of the covariance uncertainty, which can then be added to the predic-
tion error variance map. We anticipate that this can be easily extended with respect
to the standard deviation regression coe�cients. Another technique to account for
uncertainty in all parameters is to take a Bayesian approach, such as in Diggle and
Ribeiro (2007b, Chapt. 8). We judged uncertainty in the standard deviation coe�-
cients and correlogram parameters to play a minor role, given that the total number
of model parameters was much smaller than the number of observations, but taking
these additional sources of uncertainty into account would certainly make a valu-
able extension.

There is also a need to further investigate the data requirements (number of obser-
vations and their spatial locations) for adequate �tting of non-stationary variance
models. In this work, we �tted a total of seven parameters (including two addi-
tional standard deviation parameters) for the non-stationary variance model from
100 observation locations, which we considered adequate. However, the number of
standard deviation parameters when using a non-stationary variance model might
grow manifold, such as when using a more complex standard deviation function (e.g.
splines). It has been demonstrated that covariance uncertainty is minimal when ob-
servations are clustered (Marchant and Lark, 2007a), while interpolation error is
reduced by spreading the observations in geographic and feature (i.e. covariate)
space (Brus and Heuvelink, 2007). How large the sample size should be and which
sampling design is best for estimation of the standard deviation coe�cients has not
been thoroughly explored, although Wadoux et al. (2017) indicates that the non-
stationary variance model bene�ts from spreading the observations in the standard
deviation covariate space, while keeping the sampling density fairly constant over
the area.

Finally, we emphasize the value of improved uncertainty quanti�cation, as obtained
through the use of a non-stationary variance model. Map users often take the pre-
diction map as their �rst interest, but visualization of the prediction alone can give
a wrong impression about the quality of the map (Hengl and Toomanian, 2006)
and bias the subsequent decision-making process (Goovaerts, 2001). Uncertainty
quanti�cation of the prediction is as important as the prediction itself to obtain a
full impression about the quality of the maps. If the uncertainty is too large, users
may decide to invest in obtaining a more accurate map (Heuvelink, 2014), but they
can only make such decision if they have reliable information about the map qual-
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ity. We also emphasize the importance of validating the uncertainty estimate, with
measures such as θ statistics and accuracy plots. Our study showed that assuming
stationarity in the variance can lead to erroneous quanti�cation of uncertainty. In
such cases we advocate the use of the non-stationary variance model because it is
more �exible and leads to improved estimation of the prediction uncertainty.

2.5 Conclusion

We tested the non-stationary variance model developed in Lark (2009) for spatial
interpolation of a soil property. We used multiple covariates to model the spatial
standard deviation. Covariates were chosen based on the Akaike information crite-
rion and model parameters �tted using a maximum likelihood approach. We com-
pared the non-stationary variance model to the stationary variance model in a case
study. The main conclusions are:

— When modelling a soil property that exhibits local di�erences in spatial varia-
tion, using a non-stationary variance model is recommended over a stationary
variance model because it yields a more realistic quanti�cation of prediction
uncertainty. Using a constant standard deviation is often not realistic and may
lead to local over- or underestimation of the uncertainty.

— Estimation of the parameters of a non-stationary variance model is hampered
by near-singularity of the covariance matrix, for which several solutions are
proposed but that need further investigation.

— In a case study mapping gamma K in the Hunter Valley, Australia, the kriging
standard deviation maps of the stationary and non-stationary variance models
were very di�erent. Evaluation using independent validation data showed
that the non-stationary model captured the uncertainty much better.

— In the case study di�erent covariates were chosen to model the unconditional
mean of the stationary and non-stationary variance models. However, the
kriging prediction maps were nearly the same. This suggests that these are
insensitive to choices made in the model selection process. Future research
may show whether this is a consistent �nding or case-dependent.
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Chapter 3

Sampling design optimization for rainfall
prediction using a non-stationary geostatistical

model

The accuracy of spatial predictions of rainfall by merging rain gauge and radar data is partly determined

by the sampling design of the rain gauge network. Optimizing the locations of the rain gauges may

increase the accuracy of the predictions. Existing spatial sampling design optimization methods are based

on minimization of the spatially averaged prediction error variance under the assumption of intrinsic

stationarity. Over the past years, substantial progress has been made to deal with non-stationary spatial

processes in kriging. Various well-documented geostatistical models relax the assumption of stationarity

in the mean, while recent studies show the importance of considering non-stationarity in the variance for

environmental processes occurring in complex landscapes. We optimized the sampling locations of rain

gauges using an extension of the kriging with external drift (KED) model for prediction of rainfall �elds.

The model incorporates both non-stationarity in the mean and in the variance, which are modelled as

functions of external covariates such as radar imagery, distance to radar station and radar beam blockage.

Spatial predictions are made repeatedly over time, each time recalibrating the model. The space-time

averaged KED variance wasminimized by spatial simulated annealing (SSA). Themethodology was tested

using a case study predicting daily rainfall in the north of England for a one-year period. Results show

that (i) the proposed non-stationary variance model outperforms the stationary variance model, and (ii)

a small but signi�cant decrease of the rainfall prediction error variance is obtained with the optimized

rain gauge network. In particular, it pays o� to place rain gauges at locations where the radar imagery is

inaccurate, while keeping the distribution over the study area su�ciently uniform.

Based on:
Wadoux, A. M. J.-C., Brus, D. J., Rico-Ramirez, M. A. and Heuvelink, G. B. M. (2017).

Sampling design optimisation for rainfall prediction using a non-stationary geostatistical
model. Advances in Water Resources, 107, pp.126-138.
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3.1 Introduction

Accurate information about the space-time distribution of rainfall is essential for
hydrological modelling. Rain gauge rainfall measurements are generally accurate
and have high temporal resolution, but they typically have a low spatial density,
which may cause large errors in interpolated maps given the high spatial variability
of rainfall. In contrast, weather radar imagery provide a full spatial coverage of the
rainfall �eld in combination with high temporal resolution. However, radar-derived
rainfall predictions experience complex spatio-temporal disturbances and can be
inaccurate, especially in mountainous regions.

Over the past years, many statistical techniques have been used to combine the
strengths of the two measurement devices, such as Bayesian techniques (Todini,
2001), spatial logistic regression (Fuentes et al., 2008), radar bias correction (Seo
and Breidenbach, 2002; Sinclair and Pegram, 2005) and copulas (Vogl et al., 2012).
There is also a wide range of geostatistical prediction methods that combine rain
gauge measurements with radar imagery, such as kriging with external drift (KED)
(Velasco-Forero et al., 2005) and co-kriging (Sideris et al., 2014). Provisions to address
non-normality have also been employed, e.g. Box-Cox, square root and normal-
score transformation. Besides, various techniques for parameter estimation are
available, such as least squares and (restricted) maximum likelihood estimation.
Velasco-Forero et al. (2009) and Schiemann et al. (2011) make use of a non-parametric
correlogram to derive a rainfall �eld from radar imagery, dealing with anisotropy
and temporal variation of the rainfall structure. Goudenhoofdt and Delobbe (2009)
showed that geostatistical merging methods gave the best results for rainfall pre-
diction in the Walloon region in Belgium, although the performance was dependent
on the network con�guration. For a more detailed review of radar-gauges merging
techniques, we refer to Goudenhoofdt and Delobbe (2009), Nanding et al. (2015) and
Jewell and Gaussiat (2015).

Few studies focus on the sampling design of the rain gauge network. For example,
Pardo-Igúzquiza (1998) derives the optimal network design by minimizing an ob-
jective function based on prediction accuracy combined with monetary costs, Barca
et al. (2008) explore the optimal location of new monitoring stations by minimizing
the mean shortest distances. Spatial optimization of the gauge network in radar-
gauge merging studies remains largely unexplored. In sampling design for spatial
prediction of rainfall by ordinary kriging (OK), using the average OK variance as
a minimization criterion leads to spreading of the locations in geographic space.
However, for mapping with the help of covariates as in KED, we also need to spread
the locations in feature (i.e. covariate) space. By selecting locations such that the
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covariate space is fully covered, uncertainty about the regression coe�cients is min-
imized. Brus and Heuvelink (2007) showed that minimizing the spatially averaged
KED variance achieves a proper balance between optimization in geographic and
feature space. Heuvelink et al. (2012) extended this to a space-time kriging case
and minimized the space-time averaged KED variance to optimize static as well as
dynamic sampling designs.

In this study we only consider static designs, i.e. we assume that the rain gauge
locations do not change over time. This is because it is impractical to move rain
gauges in an operational context. Our objective is to optimize the static rain gauge
sampling design such that it minimizes the space-time averaged prediction error
variance. We use a geostatistical model in which both the mean and the standard
deviation are assumed to be a linear combination of covariates. The model param-
eters (regression coe�cients and correlogram parameters) are estimated from the
rain gauge data using Restricted Maximum Likelihood. We optimize the rain gauge
locations with spatial simulated annealing (SSA). The model is tested in a case study
in the north of England for daily rainfall mapping in the year 2010.

3.2 Materials and methods

3.2.1 Case study and data

The study area is located in the United Kingdom, north-east of the city of Manch-
ester. The area is 27,874 km2 in size and contains several hydrological catchments of
di�erent sizes and shapes. Two rainfall datasets are used in this study, rain gauges
and radar-derived rainfall maps.

The area is covered by a network of 229 tipping bucket rain gauges from the Envi-
ronment Agency (EA). The data originally provided by the EA are at 15-min resolu-
tion and were aggregated to daily sums. We checked the quality of the rain gauge
data and reduced the number of gauges to 185, by excluding gauges with anomalies,
such as an excessive number of missing values. The locations of the remaining 185
gauges are shown in Fig. 3.1.

The radar composite imagery is obtained from the MetO�ce NIMROD system. The
system makes use of three radars (Hameldon Hill, Ingham and High Moorsley)
shown in Fig. 3.1. The pre-processing of the weather radar data includes removal
of non-meteorological echoes (e.g. ground clutter, ground echoes due to anomalous
propagation), correction for antenna pointing, correction for beam blockage, rain
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Figure 3.1 – Map of the study area with locations of rain gauges and radar stations.

attenuation correction, vertical re�ectivity pro�le correction and rain gauge adjust-
ment (Harrison et al., 2009). The radar rainfall product is available with a spatial and
temporal resolution of 1 km and 5 min, respectively (Met O�ce, 2003). The radar
data set contains several missing 5 min periods and therefore a nowcasting model
was used to interpolate missing periods for a maximum of 3 h. Next the 5-min res-
olution images were aggregated to daily sums.

Besides these two rainfall datasets, the following covariate maps were used:
— Digital elevation model (DEM)(Fig. 3.3a) at 50 m resolution from the SRTM

(shuttle radar topography mission), see Farr et al. (2007). The elevation ranges
from 6 m to 926 m above sea level (a.s.l.) with an average of 159 m a.s.l.

— Radar beam blockage map at 1 km resolution (Fig. 3.3b). The radar beam
blockage maps were generated for each radar station using the DEM and a
ground clutter model described in Rico-Ramirez et al. (2009). The individual
beam blockage maps were combined to produce a single map with 1 km res-
olution for the 0.5 degree radar scan inclination. When merging overlapping
areas, priority was given to the lowest beam blockage value. The blockage
maps represent the degree of deviation from the 0.5 degree radar inclination
due to topographic obstacles. Values are expressed in percentages from 0 to
100. Their mean is 4.8%.

— Distance from nearest radar stations map at 1 km resolution (Fig. 3.3c). Values
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Figure 3.3 – Covariates used in model calibration: (a) Terrain elevation (m a.s.l.), (b)
radar beam blockage (%), (c) Distance from nearest radar station (km).

are expressed in km and vary from 0 (radar station location) to 102.6 km. The
mean is 51.3 km.

3.2.2 Model de�nition

Daily rainfall as measured by rain gauges Zt (s) at any location s in the study area
A and time (day) t ∈ T is modelled by:

Zt (s) =mt (s) + σt (s)· εt (s) (3.1)

where mt = {mt (s)|s ∈ A} is a spatial trend, σt the spatial standard deviation
and εt a zero-mean, unit variance, normally distributed, second-order stationary
and spatially correlated residual at time t . Note that εt may be correlated in space,
whereas we assume that εt and εt ′ are uncorrelated if t , t ′. Both the trend and the
standard deviation are modelled as linear combinations of covariates:

mt (s) =
K∑
k=0

βtk ftk (s) (3.2)

σt (s) =
L∑
l=0

κt lдt l (s) (3.3)

where the βtk and κt l are regression coe�cients and the ftk and дt l are covariates.
We assume that ft0(s) = дt0(s) = 1 for all t and s , so that βt0 is an intercept and
κt0 is a space-invariant constant contribution to the standard deviation. Note that
the covariates may vary in space and time. Note also that the space-time model
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e�ectively consists of a set of separate spatial models, one for each day of the year.
Temporal correlation is not modelled in this case study.

We consider the situation that Zt has been measured at n locations si (i =
1, . . . ,n; si ∈ A). The measurements zt (si ) are treated as realizations of Zt (si ) and
prediction is done for Zt at new, unobserved locations s0. Stacking the zt (si ) in a
(column) vector zt and changing to matrix notation yields:

zt = Ftβt + Htεt , (3.4)

where Ft is the n×(K +1)matrix of spatial trend covariates at the observation loca-
tions, βt is the (K + 1) vector of trend coe�cients, εt is the n-vector of standardised
residuals with correlation matrix Rt and Ht is an n ×n diagonal matrix de�ned by:

Ht = diag{Gt · κt }, (3.5)

where Gt is the n × (L + 1) matrix of standard deviation covariates at the obser-
vation locations and κt is an (L + 1) vector of standard deviation regression coef-
�cients. Note that while εt has correlation matrix Rt , the stochastic component
Htεt of Eq. 3.4 has variance-covariance Ct = HtRtH′t . The parameters of the model
de�ned by Eq. 3.4 are the βt , κt and the parameters of a model for the spatial auto-
correlation of the standardized residuals. We assume an isotropic exponential cor-
relogram rt (h) = rt0{exp(− h

at
)} (where h > 0 is the Euclidean distance between two

points, by de�nition rt (0) = 1), thus introducing two more parameters, namely the
micro-scale correlation rt0 and the spatial correlation length parameter at . Note that
parameter rt0 equals one minus the nugget-to-sill ratio. For notational convenience
from here on we drop the subscript t .

3.2.3 Parameter estimation

For each day, two subsets of model parameters must be estimated, the spatial trend
regression coe�cients β and all parameters of the stochastic part of the model,
Φ = [κ , r0,a]. Given Φ the estimation of β is straightforward and can be done
analytically by generalized least squares (GLS) (Lark and Webster, 2006). However,
estimation of Φ is more di�cult. We used a restricted (or residual) maximum likeli-
hood (REML) approach for this. Similar to maximum likelihood, REML aims to �nd
the vector of parameters Φ for which the observed data yield the highest probability
density (i.e. likelihood). In our case the model contains a spatial trend (�xed e�ect),
and so the likelihood must be computed from the probability distribution of the
model residuals, which can be computed from the observations if the spatial trend
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is known. This implies that the likelihood depends on the regression coe�cients,
which are unknown and also must be estimated. The solution to this problem, pro-
posed by Patterson and Thompson (1971) is to detrend the data by multiplying the
data by a projection matrix (see also Lark and Cullis, 2004). After detrending the
data and estimating Φ by minimizing the negative restricted log-likelihood given in
Eq. 3.6 below, the estimate of β is obtained by substituting the REML estimates of
Φ in the GLS equations. The negative restricted log-likelihood function is given by
(Webster and Oliver, 2007):

`(Φ|z) = constant + 1
2 log |C| + 1

2 log |F′C−1F| + 1
2z
′P′C−1(I − Q)z (3.6)

where I is an identity matrix and Q is de�ned as:

Q = F(F′C−1F)−1F′C−1 (3.7)

and:
P = I − F(F′F)−1F′ (3.8)

Next matrix C is obtained by substituting the optimized Φ and used to estimate β
using GLS (Marchant et al., 2009):

β̂ = (F′C−1F)−1F′C−1z (3.9)

3.2.4 Kriging

In KED, predictions at new locations are made by:

Ẑ (s0) = f(s0)′β̂ + g(s0)′κ̂ε̂(s0) (3.10)

where ε̂(s0) is the kriged standardized residual. Ignoring estimation errors in κ̂ al-
lows us to use a standard result from universal kriging (Webster and Oliver, 2007)
which yields:

Ẑ (s0) = (c0 + F(F′C−1F)−1(f0 − F′C−1c0))C−1z (3.11)

where f0 is a (K + 1) vector of trend covariates at the prediction location and c0 is
an n vector of covariances between the residuals at the observation and prediction
locations. Note that these are covariances of the (unstandardized) residuals σt · εt
and thus depend on the standard deviation covariatesдl , their associated (estimated)
regression coe�cientsκl and the correlogram of ε . Recall that since we use separate,
independent models for each day, only rainfall observations of that day are used to
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predict Z (s0).

The variance of the prediction error is given by (Cressie, 2015):

var(Z (s0) − Ẑ (s0)) =σ 2(s0) = c(0) − c ′0C−1c0

+ (f0 − F′C−1c0)′(F′C−1F)−1(f0 − F′C−1c0)
(3.12)

where σ 2(s0) is the variance of Z (s0). The �rst two terms on the right-hand side of
Eq. 3.12 quantify the prediction error variance of the residuals, while the last term is
the estimated spatial trend error variance. Note that here we take uncertainty about
the βk into account, whereas uncertainty about the κl and correlogram parameters
r0 and a is ignored. Taking the latter uncertainties into account is not an easy task
and beyond the scope of this work.

3.2.5 Optimizing the rain gauge locations

We suppose that, due to budget constraints, the number of rain gaugesn is �xed. The
aim is to �nd the optimal locations of the rain gauges for predicting daily rainfall
for a given time period. In order to do this, a criterion is needed that de�nes the
performance of a given sampling design and that allows to compare designs. It
makes sense to use the spatially averaged kriging variance as a criterion, because
this provides an appropriate summary measure of the prediction accuracy (Brus and
Heuvelink, 2007). In our case, where a static rain gauge network must be optimized
for a longer period of time, in addition we should also average the criterion over
time. This results in the following minimization criterion:

u =
1
T

1
|A|

T∑
t=1

∫
s ∈A

var
(
Zt (s) − Ẑt (s)

)
ds (3.13)

A closer look at the kriging variance Eq. 3.12 and hence the criterion Eq. 3.13 shows
that it only depends on the sampling locations si , the correlogram r and the spatial
trend and standard deviation covariates. This implies that the con�guration can be
optimized before the observations are taken, provided that the model and covari-
ance structure are known. Recall that in this study we only consider static designs,
i.e. we assume that the rain gauge locations do not change over time. In theory,
with a �nite number of possible rain gauge locations N derived from discretizing
the study area A, we could try all

(N
n

)
combinations, and choose the one that min-

imizes the criterion. However, �nding the optimal gauge network in this way is
practically impossible given the exorbitant number of possible combinations, even
with a coarse discretization of the study area. A solution to this problem is to use a
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spatial numerical search algorithm. We used spatial simulated annealing (SSA), as
proposed in Van Groenigen and Stein (1998).

Spatial simulated annealing is an iterative optimization algorithm in which a se-
quence of new possible sampling locations is generated. A new sampling location is
derived by selecting randomly one sampling location and shifting it in a random di-
rection over a random distance. Each time a new possible location is generated, the
criterion (Eq. 3.13) is calculated for the new candidate design and compared with
the criterion value of the current design. The new location is always accepted if
the criterion becomes smaller. If the criterion becomes larger the new location is
sometimes accepted, namely with probability:

P(accept) = e
u(old)−u(new)

temp (3.14)

where temp is a control parameter accounting for the number of remaining itera-
tions, called the temperature. It decreases from a positive starting value to zero as
the number of iterations increases. Eq. 3.14 shows that, given temp, the larger the
increase of the criterion, the smaller the probability of accepting a worse design.
Also, the smaller temp, i.e. the larger the number of iterations already done, the
smaller the acceptance probability of a worse sample. The temp parameter is kept
constant during a set of m iterations, called a chain, after which it is decreased to
a value α ∗ temp, with α < 1. This process repeats itself until the total number of
planned iterations have been completed. Parameter α should be chosen such that
the acceptance probability is close to one in the �rst chain and approximating zero
during the �nal stage of iterations. At �rst worsening designs are accepted to be
able to escape from local minima, but towards the end only designs that improve
the criterion are accepted. We refer to Heuvelink et al. (2010) for a more detailed
explanation of the numerical optimization algorithm used in this study.

3.2.6 Application to the case study

Parameter estimation - We chose one covariate for the spatial trend (radar image) and
three for the standard deviation (DEM, distance from nearest radar station and radar
beam blockage). These were chosen after consulting experts on rainfall mean and
radar uncertainty. The standard deviation covariates were multiplied by the radar
image of each day to obtain a standard deviation that is proportional to the amount
of rainfall and to avoid having a positive standard deviation where no rainfall is
detected by the radar. All covariates were projected to the British National Grid
system and resampled to a spatial resolution of 500 m × 500 m. The spatial trend
covariate was standardized for each individual day, using time-speci�c means and
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variances. The standard deviation covariates were not standardized to avoid nega-
tive values. Negative values might lead to singularity of the covariance matrix, as
explained below. Because of extreme values in the radar imagery (likely anomalies)
the upper 0.1% of the radar image values were bounded to the 99.9% quantile and
inspected visually to ensure that inconsistent values were detected and corrected.
Rainfall measurements were not transformed prior to modelling. Averaging to daily
values and including trend covariates removed much of the skewness, as con�rmed
by a post-hoc analysis of the residuals.

The global optimum for the log-likelihood function was obtained using di�erential
evolution (Storn and Price, 1997) as implemented in the R package DEoptim (Ar-
dia et al., 2015). We �xed the convergence threshold at 10−10. Calculations were
done using parallel computing on an eight cores computer and estimation of the
parameters took approximately 15 hours for the whole year.

The correlogram and standard deviation parameters were bounded prior to estima-
tion. The corresponding upper and lower limits are given in Table 3.1. The limits
were chosen based on physical reasoning and theoretical restrictions, e.g. the corre-
lation length parameter a was not allowed to be greater than one-third of the extent
of the study area and the micro-scale correlation parameter r0 was forced between 0
and 1. The intercept for the standard deviation κ0 was bounded with a lower bound
set to a small positive value to avoid singularity problems that would occur if the
standard deviation were too close to zero. For the same reason all other standard
deviation coe�cients were restricted to non-negative values. In addition, whenever
a proposal combination of model parameters generated by a DEoptim iteration pro-
duced a near-singularC matrix, such combination was rejected. We will discuss the
singularity issue more extensively in the Discussion. The calibration was performed
for 315 days of the year 2010. Days with no rainfall or excessive missing data were
excluded.

Table 3.1 – Model parameters with lower and upper estimation bounds.

Parameter Lower bound Upper bound Associated to
r0 (-) 0 1 Micro-scale correlation
a (km) 0.1 50 Correlogram length parameter
β0 (mm) - - Intercept for the mean
β1 (-) - - Radar image
κ0 (-) 0.0001 50 Intercept for the standard deviation
κ1 (m−1) 0 0.01 Elevation model × Radar image
κ2 (km−1) 0 0.1 Distance from nearest radar station × Radar

image
κ3 (%−1) 0 0.1 Radar beam blockage × Radar image
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Kriging prediction - Predictions were made with global kriging using all observa-
tions. Since no standard implementation is available for non-stationary variance
kriging, we developed our own code. We speeded up the algorithm by inverting
matrices using Cholesky decomposition and by using parallel computing.

Simulated annealing - For SSA we used the R package spsann (Samuel-Rosa, 2017).
The maximum distance that points could move was set to half the extent of the
study area, the actual distance was drawn from a uniform distribution between zero
and the maximum distance. The maximum distance in which the rain gauges can
be moved becomes smaller as the number of iterations increases and converges to
zero at the end of the process. The initial temperature was set to 0.1 with a cool-
ing parameter α of 0.8. The maximum number of chains was set to 140 whereas
the number of iterations within a chain was set to the number of observations, so
that the total number of iterations is 185 × 140 = 25,900. The process stops if no
improvement is made after 100 chains or when the maximum number of chains is
reached. The prediction error variance was evaluated on a coarse grid (3 km × 3 km)
to avoid excessive computing time. We used a Linux server 4.4.0-38-generic Ubuntu
SMP with 48 cores, the total processing time for the SSA was approximately 580
hours.

3.3 Results

3.3.1 Parameter estimation

Figure 3.4 presents box plots of the estimated parameters β , κ , r0 and a. Recall that
the trend covariate radar image was standardized in order to be able to compare
its estimated regression coe�cients with the intercept coe�cients. The trend co-
e�cients associated with the radar-rainfall map are nearly always positive (β1 >
0 for 92% of the days), indicating a positive e�ect of radar rainfall. This is as ex-
pected, since radar rainfall and rain gauge rainfall are positively correlated (their
Pearson correlation coe�cient is about 0.96). Note also that the distributions of the
trend coe�cient estimates are positively skewed. This can be explained from the
skew distribution of the rainfall (see Fig. 3.2). Since the radar image covariate was
standardized the trend coe�cient estimates are likely to be large during days with
high rainfall, in particular the trend intercept. This is con�rmed by the scatter plots
shown in Fig. 3.11).

The estimates of the regression coe�cients associated with the standard deviation
covariates are always greater or equal to zero because zero was taken as a lower
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Figure 3.4 – Box plots of estimated parameters for the mean (β), standard deviation
(κ ), micro-scale correlation (r0) and correlation length (a). See Table 3.1 for associated
covariates. Summary statistics are provided in Table 3.3 and daily values in Fig. 3.8 for

β , Fig. 3.9 for κ and in Fig. 3.10 for r0 and a.

bound (except for κ0, which has a lower bound of 0.0001). It appears that the lower
bounds for κ1, κ2 and κ3 are a real restriction because the estimates are often almost
equal to their lower bounds. For a few days estimates of κ1, κ2 and κ3 are pushed
to their upper bounds. This occurs mainly when the rainfall amount is close to
zero (Fig. 3.11), which is not surprising because these are days where the standard
deviation covariates are small. Note also that the contribution of each covariate to
the standard deviation cannot be inferred by direct comparison of the coe�cient
estimates because the standard deviation covariates were not standardized.

The boxplots of the correlogram parameters in Fig. 3.4 show that for most days
there is signi�cant spatial correlation in the residuals. The micro-scale correlation
parameter is symmetrically distributed around 0.50 whereas the correlation length
parameter has a skew distribution with a median of about 10 km. For the exponential
model this indicates a correlation up to about 30 km, which is not very large given
the extent of the study area. Table 3.3 provides summary statistics of all parameter
estimates.
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3.3.2 Kriging

Figure 3.5 shows an example of three successive days with radar image, spatial trend
(Eq. 3.2), prediction (Eq. 3.11), standard deviation of residuals (Eq. 3.3) and prediction
error standard deviation (kriging standard deviation in Eq. 3.12), as obtained using
the initial rain gauge network design. For all three days the spatial pattern of the
predicted rainfall is very similar to that of radar rainfall, illustrating the strong e�ect
of radar rainfall on the �nal prediction. This is con�rmed by the high β1 estimates
for February 15 and February 16. The β1 estimate for February 14 is much smaller,
but this is because the average rainfall was low on that day (recall that the radar
map was standardized while the rainfall data were not). Note that February 15 and
16 show an underestimation of the actual rainfall accounted for by β0 (Table 3.2).

The spatial pattern of the standard deviation maps is correlated with the radar rain-
fall map for February 14 and February 15. For February 16, from the two rainfall
events of the predicted map (south-west and north-west), only one appears in the
standard deviation map. This can be explained from the Elevation and Distance
from nearest radar station covariate maps (Fig. 2.2), which have low values in the
south-west and high values in the north-west. The e�ect is even stronger in the
kriging standard deviation map, because the rain gauge density is higher in the
south-west. The maps show also that the rainfall pattern may change dramatically
over the course of one day. This con�rms that the temporal correlation at daily scale
is not be very strong.

3.3.3 Optimization

Figure 3.6 shows the decrease of the prediction error variance as the sampling de-
sign is perturbed during SSA. The graph shows that several worsening designs are
accepted at the beginning. After this initial phase the prediction error variance
steadily decreases. After about 10,000 iterations, no substantial further reduction is
achieved, suggesting that the algorithm reached a nearly optimum design, as was
con�rmed by running the algorithm again and obtaining a similar pattern (results
not shown). Note that a marked decrease is observed at the very end of the process.
We explain the cause of this in the Discussion. Overall the criterion drops from 4.41
to 4.15, which represents an improvement of about 5.8%. Figure 3.7 shows the ini-
tial and optimized sampling locations of the rain gauges with the associated spatial
sampling density. The optimized design has a fairly uniform distribution of rain
gauges with a higher density in the north-west and a lower density in a large band
from north-est to south-est and in the south-west. The optimized sampling network
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Figure 3.5 – Radar image and maps of the trend, standard deviation of residuals (sd),
kriging prediction and kriging standard deviation for three selected dates (14, 15 and

16 Feb. 2010).
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Table
3.2

–
M
odelparam

eter
estim

ates
for

three
exam

ple
days.

D
ay

r0
a

β
0

β
1

κ
0

κ
1

κ
3

κ
4

February
14th

0.438
19,078

0.336
0.405

0.175
4.611 −06

1.831 −06
1.712 −05

February
15th

0.718
31,813

4.918
1.912

1.712
0.0002

1.704 −06
6.137 −08

February
16th

0.731
15,597

1.995
1.647

1.072
2.146 −16

4.627 −06
8.953 −18

Table
3.3

–
Sum

m
ary

statistics
ofestim

ated
m
odelparam

eters.

r0
a

β
0

β
1

κ
0

κ
1

κ
3

κ
4

M
ean

0.495
12,893

1.989
1.120

0.915
0.001

4.39 −06
0.005

M
edian

0.511
10,359

0.729
0.522

0.503
0.0002

2.23 −06
3.15 −05

SD
0.294

11,668
3.149

1.630
1.163

0.002
1.126 −05

0.016
Low

erquartile
0.270

4,458
0.157

0.107
0.190

2.601 −05
8.014 −07

3.580 −09
Upperquartile

0.727
16,948

2.299
1.439

1.171
5.834 −04

3.793 −06
2.615 −03

Skew
ness

−0.151
1.534

2.813
3.034

2.558
3.965

6.577
5.028

M
inim

um
4.215 −16

154.5
0.001

−1.03
0.004

2.055 −20
5.847 −23

1.637 −18
M

axim
um

0.995
50,000

18.39
13.4

8.547
0.01

0.1
0.1
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Figure 3.6 – Trace of the minimization criterion, Eq. 3.13, during SSA (for a case of
25,900 iterations).

also puts rain gauges towards the boundary of the study area. This is a well-known
e�ect reported in Brus and Heuvelink (2007) and Van Groenigen et al. (1999).
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Figure 3.7 – Initial (left) and optimized (right) rain gauge network with associated
density of rain gauges. Density is calculated using a Gaussian kernel as de�ned in

Baddeley and Turner (2005), using a standard deviation of 10 km. Values are expressed
in rain gauge per grid cell (500 m × 500 m).

3.4 Discussion

For the three example dates, the trend and kriging prediction maps have a very
similar pattern to that of radar rainfall. The trend is taken as a linear function of the
radar image. The trend map and the kriging prediction map are nearly the same.
This shows that the kriging step does not add much, which is because the residual
variance is small and the residual spatial correlation is often weak. Apparently, the
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Table 3.4 – Pearson correlation coe�cients between rain gauge density and standard
deviation covariates.

Elevation Distance Beam blockage
Density initial network 0.31 −0.38 0.09
Density optimized network 0.71 0.29 0.36

radar signal is an important covariate and explains a large part of the rainfall spatial
variation. This is not a surprising result that has been reported in many previous
studies (e.g. Verworn and Haberlandt, 2011). The importance of radar rainfall is
also con�rmed by the trend regression coe�cients (Fig. 3.4), which are large for the
radar covariate. Temporal correlation in daily rainfall is weak and ignored in this
example study, but might become more important in case of modelling at a �ner
time scale, such as required in urban hydrology applications (Muthusamy et al.,
2017). Increase of temporal correlation would imply that rainfall at a previous time
step becomes a signi�cant covariate. In such case, a more elegant approach might be
to replace spatial kriging as employed here by space-time kriging (Heuvelink et al.,
2015; Gräler et al., 2016).

The standard deviation maps in Fig. 3.5 show that the radar image is also an impor-
tant covariate to help explain the residual variance, but that other covariates, such
as elevation and distance to the radar station, are important too. This is most obvi-
ous from the maps for February 16, where there are signi�cant di�erences between
the radar image and standard deviation maps, particularly in the south-west part of
the study area. Comparison of the spatial standard deviation of the residuals and
kriging standard deviation maps also shows that mapping does bene�t from spatial
interpolation of the residual: the kriging standard deviation is substantially smaller
than the spatial standard deviation, particularly in areas with high rain gauge den-
sity and high rainfall.

Comparison of the estimated trend and standard deviation coe�cients with the
amount of rainfall in Fig. 3.11 reveals that the upper bounds of the standard de-
viation coe�cients are reached when very little rainfall is recorded. This can be
explained from the fact that the standard deviation covariates are small when the
radar rainfall is small, and hence any residual variation has to be represented by
increasing the coe�cient estimates. In contrast, the trend parameters are nearly al-
ways high during days of heavy rainfall. This is also as expected because the trend
covariates were standardized and higher rainfall and higher rainfall variation is then
modelled through higher trend regression coe�cients.

Overall, the micro-scale correlation and correlation length parameters of the correl-
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ogram is insensitive to the amount of rainfall and shows a seasonal (winter/summer)
pattern. In summer there is a stronger micro-scale correlation and a larger corre-
lation distance than in winter. This may be related to rainfall type which varies by
season, i.e. frontal weather systems in winter and convective rainfall in summer.
The currently used correlogram is assumed isotropic due to computational simplic-
ity, but one might consider relaxing this assumption as daily rainfall often exhibits
signi�cant anisotropy (Gyasi-Agyei, 2016).

Figure 3.7 shows that after optimization rain gauges are placed fairly uniformly
over the study area, but that some parts have up to four times higher sampling
density than other parts. The high density areas are those that have on average
large residual and kriging standard deviation. Since radar rainfall maps vary day
by day and their annual average is nearly constant in space, high density sampling
areas are correlated with the other standard deviation covariates, notably elevation
and distance from nearest radar station. Elevation turns out to be most important,
as indicated in Table 3.4 that shows the Pearson correlation coe�cients between
rain gauge density and standard deviation covariates. Distance from nearest radar
station is least important, which comes as a surprise but might be explained from
the fact that the training data (i.e. rainfall data from the initial network) do not
cover the distance from the nearest radar station feature space entirely, and hence
the relationship between distance from nearest radar station and residual variation
may be di�cult to detect.

The decrease of the space-time average prediction error variance that results from
optimizing the network is relatively modest (i.e. 5%). It is smaller than that obtained
in similar studies (e.g. Baume et al., 2011; Wang et al., 2014). The main reason for
the modest decrease is that we imposed a static design that must do well for all
days of the year. On the long run it performs better than the initial design but there
will be days where the initial design (or any other design, for that matter) will do
better, simply because prediction error variance is relatively large in those parts of
the study area where there is substantial rain, and these vary day by day. If sampling
design optimization were applied to dynamic designs then a stronger reduction of
the criterion would have been achieved, but clearly this is not a realistic option.
The costs of moving rain gauges would be too high, and moreover it is di�cult to
predict ahead of time where areas of high rainfall intensity will be. Even though the
current 5% improvement is modest, it does improve the accuracy of the resulting
maps. Alternatively, optimizing the sampling design could also be used to reduce
sampling costs. We evaluated this by optimizing a sampling design that uses only
90% (166) of the rain gauges used in this study. This resulted in a slightly smaller
criterion value than that of the initial design using 185 rain gauges. Thus, a 10%
reduction in the number of rain gauge stations can be achieved without accuracy
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loss, provided these are placed optimally.

For this case study, the criterion decreases at the very end of the SSA iteration pro-
cess when we expect it to stabilize (Fig. 3.6). This can be explained by the coarse
prediction grid that we used for calculating the space-time average kriging variance.
The distance over which sampling locations are shifted becomes smaller than the
grid mesh towards the end of the iteration process. The algorithm then moves points
to the centre of grid cells, since these are the points for which the kriging variance
is computed. We tested this hypothesis by computing the mean shortest distance
from gauge locations to grid cell centres. For the optimal design it was only 10% of
the expected mean shortest distance for a random design (which is 1,150 m in case
of a 3 km × 3 km grid). The �nal drop of the criterion is thus an artefact caused by
using a coarse prediction grid. It can be eliminated by using a �ne prediction grid,
but this would increase computing time. Considering the extent of the study area,
the artefact has no serious consequences for the optimal design, since these �nal
shifts are relatively small.

Even with a coarse prediction grid the SSA algorithm took a lot of computing time.
Alternative numerical optimization methods could be tried (e.g. genetic algorithms
(Behzadian et al., 2009), particle swarm optimization (Jarboui et al., 2007) or meta-
heuristic search (e.g. NSGAII Deb et al., 2003), but another option is to reduce the
computing time during each SSA iteration step. The bulk of the work is associated
with solving the kriging system, which we did by Cholesky decomposition of the
covariance matrix (Section 3.2.6). However, since each SSA iteration step only in-
volves moving one station and hence only one row and column of the covariance
matrix are changed, computations could be speeded up by using block inversion
(Heesterman, 1983). This would become particularly attractive when the number of
rain gauges n is large. However, it might con�ict with the use of parallel computing
solutions.

This study optimized a spatial sampling design for a case in which spatial variation
was characterized by a non-stationary variance model. To the best of our knowl-
edge this has not been done before, but it was important because it is not realistic
to assume that rainfall spatial variation is stationary. We veri�ed this by calculating
and comparing the log-likelihood and Akaike information criterion (AIC) (Akaike,
2011) for a stationary variance and non-stationary variance model. The stationary
variance model was obtained from the non-stationary variance model by setting pa-
rameters κ1, κ2 and κ3 to zero. Parameters were optimized using REML as before.
The log-likelihood and AIC results are shown in Table 3.5. They clearly show that
the non-stationary variance model is more suitable. The non-stationary variance
model had a larger log-likelihood for 305 out of 315 days, while the AIC was smaller
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for 257 out of the 315 days. The use of a non-stationary variance model did pose

Table 3.5 – Log-likelihood and Akaike information criterion (AIC) summary statistics
for the stationary variance and non-stationary variance models.

Log-likelihood AIC
Mean Min. Max. Mean Min. Max.

Stationary variance model -195 -672 507 400 -1004 1355
Non-stationary variance model -152 -647 708 321 -1400 1311

some additional problems, though. We used a model in which the standard deviation
is a linear combination of multiple covariates. In this respect, we extended the work
of Lark (2009) or Hamm et al. (2012) by using a more complex variance component.
Kriging is sensitive to a near-singular covariance matrix and di�erent approaches
may be used to avoid it (Marchant and Lark, 2007b; Marchant et al., 2009). In our
case, we initially avoided near-singularity during parameter estimation by rejecting
parameter combinations suggested by the di�erential evolution algorithm if they
lead to a reciprocal condition number (Golub and Van Loan, 2012) smaller than 0.2.
However, this did not completely solve the problem because during SSA optimiza-
tion, new network designs are tried. It then happened that near-singularity prob-
lems were introduced at this stage, while they did not occur for the initial network.
We therefore imposed further restrictions on the standard deviation regression co-
e�cients, by requiring that none can be negative and that the intercept must be
greater or equal than a small positive threshold, as explained in Section 3.2.6. This
solved the near-singularity problem, but at the expense of restricting the parame-
ter search space. Alternatively, a solution might be to model the log-transformed
standard deviation as a linear function of covariates.

Finally, we should note that while our approach included uncertainty in the trend
regression coe�cients, we ignored uncertainty about the standard deviation regres-
sion coe�cients and correlogram parameters. The KED variance given in Eq. 3.12
may therefore underestimate the true uncertainty. In principle uncertainty about the
covariance parameters can be included, such as by using a geostatistical approach
(Zimmerman, 2006; Zhu and Stein, 2006; Diggle and Ribeiro, 2007a; Marchant and
Lark, 2007a), but it is not obvious that the improved uncertainty assessment out-
weighs the substantial increase of computational complexity.

3.5 Conclusions

We extended geostatistical interpolation of rainfall data by employing a non-
stationary variance KED model to predict rainfall by merging rain gauge and radar

59



Chapter 3. Sampling design optimization for rainfall prediction using a non-stationary geostatistical model

data. We optimized the rain gauge sampling design by minimizing the space-time
average KED variance for a study area in England. The main conclusions are:

— Geostatistical prediction of rainfall from rain gauge data and radar data ben-
e�ts from a model that incorporates non-stationarity in the mean and vari-
ance. This model matched real-world observations better than a stationary
variance model, as shown by likelihood and Akaike Information Criterion
statistics. Estimation of non-stationary variance parameters is hampered by
(near-)singularity problems. This particular problem should be investigated
more closely.

— In our case study we made spatial interpolation repeatedly over time, without
accounting for the temporal structure. Temporal correlation of daily rainfall
is small, but it might increase if a smaller temporal support is used, such as
for hourly or 10-minute average rainfall. Space-time kriging might then be a
more attractive approach.

— The standard deviation of rainfall residuals, i.e. rain gauge rainfall minus a
trend mainly derived from radar rainfall, is positively correlated with radar
rainfall, elevation, distance to radar station and beam blockage. In our case
study the standard deviation depended more on elevation than on distance to
radar station, which in turn was more important than beam blockage. Future
studies may show whether this is a consistent �nding or case dependent.

— Geostatistical optimization of a rain gauge network is feasible and yields plau-
sible designs. The optimal design aims for a fairly uniform spatial distribution
of the gauges, with an increased density in areas where the residual variance
is large. In our case study this was in areas with high elevation, far from radar
stations and near the study area boundary. The sampling density in densely
sampled parts of the study area was four times higher than in sparsely sam-
pled parts. Further work could include �eld accessibility in a multi-objective
optimization procedure (Stumpf et al., 2016).

— Optimization of the rain gauge network leads to only a modest improvement
of the space-time average prediction error variance. This is a consequence of
using a static design, which cannot increase sampling density of subareas with
heavy rainfall, because these subareas vary from day to day. Nonetheless, the
achieved improvement is relevant and implies that savings on data collection
costs could be achieved without compromising on prediction accuracy.
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Chapter 4

E�cient sampling for geostatistical surveys

A geostatistical survey for soil requires rational choices regarding the sampling strategy. If the variogram

of the property of interest is known then it is possible to optimize the sampling scheme such that an

objective function related to the survey error is minimized. However, the variogram is rarely known prior

to sampling. Instead it must be approximated by using either a variogram estimated from a reconnaissance

survey or a variogram estimated for the same soil property in similar conditions. For this reason, spatial

coverage schemes are often preferred, because they rely on the simple dispersion of sampling units as

uniformly as possible, and are similar to those produced by minimizing the kriging variance. If extra

sampling locations are added close to those in a spatial coverage scheme then the scheme might be broadly

similar to one produced by minimizing the total error (i.e. kriging variance plus the prediction error due

to uncertainty in the covariance parameters). We consider the relative merits of these di�erent sampling

approaches by comparing their mean total error for di�erent speci�ed random functions. Our results

showed the considerable bene�t of adding close-pairs to a spatial coverage scheme, and that optimizing

with respect to the total error generally gave a small further advantage. When we consider the example

of sampling for geostatistical survey of clay content of the soil, an optimized scheme based on the average

of previously reported clay variograms was fairly robust compared to the spatial coverage plus close-pairs

scheme. We conclude that the direct optimization of spatial surveys was only rarely worthwhile. For most

cases, it is best to apply a spatial coverage scheme with a proportion of additional sampling locations to

provide some closely spaced pairs. Furthermore, our results indicated that the number of observations

required for an e�ective geostatistical survey depend on the variogram parameters.

Based on:
Wadoux, A. M. J.-C., Marchant, B. P. and Lark, R. M. (2019). E�cient sampling for

geostatistical surveys. European Journal of Soil Science. In press.
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4.1 Introduction

When mapping a continuous soil variable, geostatistical predictions at unobserved
locations are made from a limited set of sampling units, called a sample. The spatial
locations of those units, i.e. the sampling scheme or sampling design, has a key
role in determining the cost of the survey and the quality of the predictions. Often,
limited resources are available and one must adopt e�cient strategies for the soil
sample collection.

Several solutions have been proposed to select additional sampling sites optimally
using ordinary kriging, a basic technique in geostatistics. These often require prior
knowledge about the correlation function (i.e. variogram) of the target property. For
example, Van Groenigen et al. (1999) proposed spatial simulated annealing (SSA) to
optimize the sampling scheme so as to minimize the spatially averaged kriging vari-
ance as the objective function. This method leads to a space-�lling distribution of
observations, which are placed more or less evenly over the area of interest. A sim-
ilar scheme can be obtained by the spatial coverage method described in Royle and
Nychka (1998). They proposed a general geometric, space-�lling criterion and pub-
lished a point-swapping algorithm in S-plus to minimize this criterion. Brus et al.
(1999) proposed the mean of the squared shortest distance (MSSD) as a geometric
minimization criterion, so that it can be minimized by the fast k-means algorithm.
Later this was implemented in the R language by Walvoort et al. (2010).

One advantage of coverage schemes is that they do not depend on the variogram
of the soil property to be sampled. Coverage schemes are created by minimizing a
criterion that is simply a function of the distance between sampling locations. Brus
et al. (2007) showed that using a spatial coverage scheme led to only marginally
larger mean ordinary kriging variances (MKV) than schemes where this quantity
was minimized directly. The authors endorsed early geostatistical practice in soil
science where sampling units were located on a regular grid (Yfantis et al., 1987).

However, regularly-spaced sampling schemes are inadequate to model the short-
range variation of the soil property, which is critical for geostatistical analyses
(Starks, 1986). A practical solution, as suggested for instance by De Gruijter et al.
(2006, pp. 166-168), is to supplement the spatial coverage sample by a few addi-
tional units, located at short distances from the existing units. Recently, Lark and
Marchant (2018) demonstrated that including such a short-distance subset markedly
decreased the uncertainty of the kriging prediction for little additional e�ort in �eld
data collection. Over a contrasting set of random variables, the authors proposed
a simple rule that about 10% of the total sample size should be devoted to short
distance units.
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Using a more formal expression of the total error in a geostatistical survey, Marchant
and Lark (2007a) optimized a sampling scheme by minimization of the sum of er-
ror contributions from the kriging variance and the e�ects of uncertainty in the
variogram estimate. We refer to this objective function as the total error. The au-
thors showed that the con�guration of the optimized scheme varied according to
the variogram, which was unknown prior to sampling, and used a Bayesian frame-
work to account for a set of plausible values of variogram parameters. A similar
approach was applied by Zhu and Stein (2006) for redesigning an air monitoring
network. The authors noted that estimates of the variogram parameters were un-
certain. They approximated the error covariance matrix of the parameters by the
inverse of the Fisher information matrix, and used a Taylor series approximation
of its e�ect on the prediction variance to account for it in their sampling objective
function. For both studies, the resulting optimized schemes closely resembled the
spatial coverage scheme with a small number of close-pairs of locations included,
which are useful for estimating the spatial correlation over short distances. They
showed that the number of close-pair locations depended largely on the variogram
parameter values, and especially the variogram distance parameter.

However, the optimization procedure using a formal criterion for the minimization
of the total error is complex and time-consuming. The formula for the total predic-
tion error depends on the variogram and therefore it cannot be calculated exactly
prior to sampling. Instead it must be approximated by using either a variogram
estimated from a reconnaissance survey or a variogram estimated for the same soil
property in similar conditions. Schemes based on approximate variograms are likely
to be suboptimal. In such cases, spatial coverage sampling schemes (possibly with
additional close-pairs) o�er a viable, and relatively simple alternative to plan a soil
survey with little or no prior information.

Surveyors must also consider the number of sampling units that are required to pro-
duce e�ective geostatistical predictions. The sample must be su�cient to estimate
an accurate variogram function. Kerry and Oliver (2007) noted that it is generally
accepted that 100 units are required to produce a reliable method of moments esti-
mate of the variogram. This advice stems from a study of simulated random func-
tions conducted by Webster and Oliver (1992). Kerry and Oliver (2007) subsampled
four �eld-scale surveys of clay content and determined that a reliable residual max-
imum likelihood (REML) estimate of the variogram could be attained with fewer
than 50 sampling units.

In summary, sampling scheme a�ects the uncertainty in the variogram parameters
which can have an impact on the prediction error variance. Supplementing a spatial
coverage sample by a simple rule of thumb reduces the prediction error variance,
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but the overall distribution of sample points in a scheme can be optimized, although
this is laborious and requires some prior information. Whether a practical sampling
strategy is markedly better when based on optimization rather than the simple rule
remains an open question, and past work has not compared the approaches directly.
That is what we address here.

In this research we examined empirically the di�erence between spatial coverage
sampling schemes (sc), spatial coverage schemes supplemented with close-pairs of
points (sc+) and schemes optimized to reduce the total error. We compared these
schemes with respect to the sample size required to obtain comparable results. Our
objective was to show whether formal optimization is generally worthwhile, given
the computational demands and the challenges of specifying prior values of variance
parameters, and whether spatial coverage sampling with supplementary points is a
robust practical strategy.

In our �rst scenario we minimized this error for a known hypothetical variogram
and a given sample size. Then we determined the size of a spatial coverage scheme
that would be required to achieve the same total prediction error. Similarly, we
considered the size of a spatial coverage scheme plus 10% close-pairs that would
also achieve the same total prediction error.

In addition to the spatial arrangement of sampling units we also considered the
minimum number of units that were required to produce useful geostatistical pre-
dictions. For sample sizes larger than this minimum sample size the ordinary kriging
predictor outperformed the simple random sample mean as a predictor of the val-
ues at points. For sample sizes smaller than this minimum there was no bene�t
from a geostatistical approach for mapping. We assumed that a geostatistical sur-
vey should, as a basic minimum requirement, ensure that local spatial predictions
have an average prediction error variance that is smaller than the prediction error
variance of the regional mean, estimated by design-based sampling. Webster and
Lark (2012) discussed how the design-based mean can be treated statistically as a
point prediction. We assumed that this design-based survey was the same size as
the geostatistical survey, that the sampling units were selected according to a simple
random scheme and that the corresponding design-based estimate of the mean was
used as the prediction at each location.

In our second scenario we considered a geostatistical survey of soil clay content
and the e�ect of using the average variogram of a set presented by Paterson et al.
(2018) as a basis for a sampling scheme. We minimized the total prediction error
variance given a sample size based on the average variogram and then repeated the
tests conducted in the �rst scenario to �nd the size of the sc and sc+ schemes that
would be required to achieve the same total error as the optimized scheme for each
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of the clay variograms.

4.2 Materials and methods

4.2.1 Formulation of the objective function

Using the ordinary kriging formulation, we consider the situation in which the soil
property (which is assumed to be a realization of a random function Z ) has been
measured at n locations si (i = 1, . . . ,n; si ∈ A). The measurements z(si ) are treated
as realizations ofZ (si ) and prediction is done forZ at unobserved locations s0, with a
known covariance parameter vector θ . Stacking the z(si ) in a vector z and changing
to matrix notation yields the ordinary kriging prediction equation (Webster and
Oliver, 2007):

Z̃ (s0 |θ ) = λ>z, (4.1)

where λ> is the vector of kriging weights, obtained from the kriging equation:

λ = A−1d, (4.2)

©­­­­­«
λ1
λ2
...
λn
ψ

ª®®®®®¬
=


C(s1 − s1 |θ ) C(s1 − s2 |θ ) . . . C(s1 − sn |θ ) 1
C(s2 − s1 |θ ) C(s2 − s2 |θ ) . . . C(s2 − sn |θ ) 1

...
...

. . .
...

...
C(sn − s1 |θ ) C(sn − s2 |θ ) . . . C(sn − sn |θ ) 1

1 1 . . . 1 0



−1

×


C(s0 − s1 |θ )
C(s0 − s2 |θ )

...
C(s0 − sn |θ )

1


,

(4.3)
whereψ is the Lagrange multiplier introduced to allow minimization of the kriging
variance subject to the constraint that the n weights λ1, λ2, · · · , λn sum to one. The
covariance between the ith and jth locations is denoted by C(si − sj |θ ). The term
C(si−si ) is the sill variance (a priori variance). Note that while A needs to be derived
(and inverted) once if all observations are used for prediction at every target site, d
must be computed for every prediction location s0.

From Eq. 4.1 and 4.3, the expected squared error of the prediction is given by:

σ 2
OK(s0) = var

(
Z (s0) − Z̃ (s0 |θ )

)
= C(s0 − s0 |θ ) − λ>d.

(4.4)

In addition to the squared error of the prediction, Marchant and Lark (2007a) and
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Zhu and Stein (2006) considered the e�ect of uncertainty in the estimated spatial
model (variogram) parameters by a Taylor series approximation:

E
[
τ 2(s0)

]
=

q∑
i=1

q∑
j=1

cov(θi ,θ j )
∂λ>

∂θi
C
∂λ

∂θ j
, (4.5)

where cov(θi ,θ j ) is the covariance between the ith and jth parameters. This requires
the variogram parameters θi (i, j = 1, . . . ,q) to be known so that Eq. 4.5 can be
approximated prior to sampling. The n-vector of partial derivatives of the kriging
weights with respect to the ith variance parameter is denoted by ∂λ>

∂θi
and can be

obtained by (Marchant and Lark, 2007a):

∂λ

∂θi
= A−1

(
∂d
∂θi
− ∂A
∂θi

A−1d
)
. (4.6)

The covariance between the variogram parameters can be approximated using the
inverse of the Fisher information matrix F (Kitanidis, 1987):

cov(θi ,θ j ) ≈ F−1(θi ,θ j ) =
(
1
2Tr

[
C−1 ∂C
∂θi

C−1 ∂C
∂θ j

] )−1
, (4.7)

where Tr[·] denotes the trace of the matrix. The total error at locations s0, σ 2
P(s0),

is given by the sum of the squared prediction error σ 2
OK(s0) and the spatial model

parameter uncertainty E
[
τ 2(s0)

]
:

σ 2
P(s0) = σ 2

OK(s0) + E
[
τ 2(s0)

]
, (4.8)

where subsript P stands for parameter. This can be aggregated to obtain a spatial
average:

σ̄ 2
P =

1
A

∫
s ∈A

(
σ 2

OK(s) + E
[
τ 2(s)

] )
ds . (4.9)

In practice, the integral σ̄ 2
P is numerically approximated by a discrete summation

over a spatial grid.

4.2.2 Optimization of the sampling schemes

We start with an initial random set of sampling locations of size N , lying within the
boundaries of study areaA. We assume that Z (si ) is a stationary isotropic normally
distributed random �eld, characterized by a constant mean and �tted correlation
function ρ(h) (h is the spatial lag or separation distance). The aim is to �nd the op-
timal sampling scheme, which minimizes the objective function (Eq. 4.9), given the
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parameters of ρ(h). Many algorithms have been developed for solving optimization
problems. We use simulated annealing (Kirkpatrick et al., 1983), extended for spatial
optimization by Van Groenigen et al. (1999) for generating sequences of new possi-
ble schemes. A new sampling scheme is created by randomly shifting a randomly
selected unit within the study area. This generates a new candidate scheme for
which the objective function can be evaluated with Eq. 4.9, and compared with that
of the previous scheme. The new candidate scheme is accepted if it has a smaller
value of the objective function than the previous one. If the new scheme has a larger
value of the objective function then it is accepted or rejected at random; the proba-
bility of acceptance is given by (Wadoux et al., 2017):

P(accept) = exp
(
σ̄ 2

P(old) − σ̄ 2
P(new)

α

)
, (4.10)

where the control parameter α is a temperature parameter. The temperature is kept
constant during a set of perturbations, called a chain, after which it is decreased to a
value of β ×α for β < 1. In this way, the risk of the optimizer becoming trapped in a
local but not a global minimum is reduced. We used the implementation provided by
the R package spsann (Samuel-Rosa, 2017) through the optimUSER function. The
initial temperature α was set to 3 with a cooling parameter β of 0.9. These were
chosen so that P(accept) is close to 1 in the �rst chain and generally zero at the
�nal chain. The maximum number of chains is set to 200, so that the total number
of iterations is N × 200. The process stops if the determined number of iterations
(N ×200) is reached or if the criterion remains constant for ten chains. The candidate
locations are the centre of cells of a square grid.

4.2.3 Scenario 1

The �rst scenario considers the case where the variogram is known. We character-
ize the spatial correlation ρ by the second parametrization of the isotropic Matérn
model (Matérn, 1986) given by (Stein, 2006, p. 31):

ρ(h) = 1
2ν−1Γ(ν )

(
2ν 1

2h

a

)ν
Kν

(
2ν 1

2h

a

)
, (4.11)

where h is the separation distance,Kν is the modi�ed Bessel function of the second
kind of order ν (see Abramowitz and Stegun, 1972, pp. 374-379) and Γ is the gamma
function. The correlation function ρ(h) has parameters a and ν . Parameter a is the
distance parameter which indicates how fast the correlation decays with increasing
h and ν is the smoothness parameter. Stein (2006) noted that ν is the critical param-
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eter in the Matérn correlation model. The larger is ν , the smoother is Z . We chose
a Matérn model for its �exibility in modelling the spatial covariance with a small
number of parameters (Minasny and McBratney, 2005).

For the �rst scenario, we generated a square area of 100 m × 100 m. Spatial coverage
schemes of size N = 60, 61, . . . , 200 are derived by discretization of the area into N

geographical strata using the stratify method from the R package spcosa (Walvoort
et al., 2010). The spatial coverage units are taken in the centroid of the strata, which
is equivalent to minimizing the mean squared shortest distance between a location
in the region and the nearest sampling location. In addition, we also generated
samples of size N = 60, 61, . . . , 200 in which the sampling locations were distributed
according to a spatial coverage scheme, with a subset of 10% of units positioned at
an arbitrary distance that was short relative to the spacing between neighbouring
points in the basic spatial coverage survey. This arbitrary short distance was set to
2 m because of a mean spacing between neighbouring locations in the sc scheme of
6.6 m for N = 60 and 12.5 m for N = 200. These close-pair units were selected by
simple random sampling without replacement in a randomly chosen direction from
0-360 degrees. We repeated the selection of close-pairs several times to determine
the sampling variation in total variance. Since the latter was small, we did not pursue
any further because this con�rmed the very tight con�dence intervals in the Lark
and Marchant (2018) study.

We considered di�erent sets of variogram parameter values, all of which had a total
sill variance of one. Four values of ν were tested; ν = 0.5 (equivalent to the ex-
ponential variogram), ν = 0.2 (rougher than the exponential), ν = 1.1 and ν = 2
(smoother than the exponential). These four ν values were combined with each of
three distance parameter: a = 10, 20 and 30 and three ratios of the nugget (c0) to
total sill variance (c0 + c1 = 1) for strong (c0 = 0), moderate (c0 = 1/3) and weak
(c0 = 2/3) spatial dependence. Note that we use the nugget to sill ratio to character-
ize the spatial dependence of a model with known parameters, but this should not be
done when comparing empirical variograms because the magnitude of the nugget
variance is likely to depend in part on the sampling design. Each of the 4×3×3 = 36
scenarios were optimized for a �xed sample size N = 90, in the way described in
the previous section. To speed up computations the criterion was evaluated at 34 ×
34 locations on a regular square grid of spacing 3 m.

In this scenario we compared for each variogram the size of the sc and sc+ samples
required to attain the same value of the objective function as the optimized scheme
of 90 units.

We also compared the average total prediction variance that resulted from the geo-
statistical survey of each random function with the prediction variance that would
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result from using an estimate of the simple random sample of the �eld mean as a
predictor of the value at points. If the design-based survey consists of N locations
selected by simple random sampling this prediction variance is equal to (Brus et al.,
1992, Equation 7):

σ 2
DB = σ

2
(
1 + 1

N

)
, (4.12)

where σ 2 is the dispersion variance (the variance of the variable within the study
area) and theσ 2/N term re�ects the uncertainty in estimating the �eld-scale mean of
the property of interest with simple random sampling (Brus and De Gruijter, 1993).
Instead of the spatial variance (dispersion variance) for a single realization, we used
the model expectation of the dispersion variance in Eq. 4.12, so that the model ex-
pectation of the spatial mean of the design-based estimation error variance at points
was also obtained. For each set of variogram parameters, we determined the small-
est sample size of a geostatistical survey which led to the average total prediction
variance being less than this design-based prediction variance. We determined the
dispersion variance for each random function from the average variance of 1000
lower-upper (LU)-simulations of the function at 2000 random locations across the
study area.

4.2.4 Scenario 2

The second scenario considered a survey of soil clay content where no �eld-speci�c
information about the variogram was available. In such a circumstance, McBrat-
ney and Pringle (1999) suggested that the average of previously published soil clay
variograms should provide useful information for assessing soil sampling schemes.

Here we used data from a published study on �eld-scale variability of soil vari-
ograms. We used a compilation of soil clay variograms, provided by Paterson et al.
(2018). They were gathered from the existing literature, based on untransformed
data and physical measurements. We converted the exponential, spherical and lin-
ear clay variograms to a Matérn model (Eq. 4.11) by re-estimating their parameters
using a least squares approach. In this way, we compared surveys using variograms
with same number of estimated parameters. From the set of Matérn clay variograms,
we derived an average experimental variogram as in McBratney and Pringle (1999).
Each variogram for soil clay was evaluated at a set of closely-spaced lag intervals.
Each value of semivariance was transformed to its fourth root. The average value of
the fourth root of the variogram was computed at each lag interval over all the clay
variograms and the resulting values were back-transformed to their fourth power.
The fourth root is used to give a normally distributed variable even when the un-
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derlying variable includes extreme values (Cressie and Hawkins, 1980). Finally, a
Matérn correlation function (Eq. 4.11) was �tted by non-linear least squares to the
average experimental variogram. The estimated Matérn correlation function was
similar to an exponential variogram (ν = 0.5) with a nugget variance c0 = 2.6, a
partial sill c1 = 8.0 and a distance parameter a = 44.1 m (e�ective range is about
85 m). We then optimized the distribution of 90 sample units within a 500 m × 500 m
region, using the mean total prediction error variance, Eq. 4.9, as the objective func-
tion specifying the parameters of the average variogram. The objective function
was evaluated at a centred square grid of 25 × 25 points with a spacing of 20 m. We
then found, for the random function with parameters estimated for each clay vari-
ogram, the value of the objective function achieved by optimizing sample schemes
of size N = 60, 61, . . . , 200, and the corresponding number of observations in an sc
and an sc+ scheme required to match the value of the objective function achievable
by optimization with the average clay variogram.

4.3 Results

4.3.1 Scenario 1

Figures 4.1, 4.3, 4.5 and 4.7 show 90 unit sampling schemes optimized to minimize
the expected total error with di�erent values of the nugget to sill ratio, di�erent
distance parameters a and smoothness parameters of 0.2, 0.5, 1.1 and 2, respectively.
In all schemes, the sampling locations are generally evenly dispersed over the area
with some close-pair units. When the nugget to sill ratio increases (larger c0), the
number of close-pairs tends to increase substantially. The pattern for larger values of
the distance parameter a is reversed. The larger is a, the smaller are the transects of
close-pairs. When c0 = 2/3, c1 = 1/3 and a = 10 the sample size seems insu�cient to
cover the whole area. This might indicate that for this variogram and study area, 90
units were insu�cient to estimate both the variogram and predict the soil property
across the region. All values of ν tested had comparable patterns for the optimized
schemes.

Figures 4.2, 4.4, 4.6 and 4.8 show the values of the objective function for each vari-
ogram type for the sc or sc+ schemes compared to the values of the objective func-
tion from the optimized 90-unit sample scheme. The values of objective function
for the sc schemes show a rougher pattern than those of the objective function for
the sc+ schemes. The sc schemes performed poorly in most cases. The poor per-
formance was less pronounced for large values of a when ν was 1.1 or 2. In such
cases, sc schemes were only slightly worse than the optimized schemes. The sc+
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Figure 4.1 – Optimized 90-sample schemes for di�erent variogram parameters and
ν = 0.2.

schemes always performed slightly worse than the optimized schemes. With in-
creasing nugget to sill ratio, the sc+ schemes needed an increasing number of ad-
ditional units to reach the same value for the objective function as the optimized
sample scheme. This was valid for all values of ν tested.

For each set of variogram parameters, Table 4.1 reports the number of additional
samples necessary when using the sc+ scheme to reach the objective function of the
optimized 90-unit scheme. Overall, the sc+ scheme needs at least 8 and a maximum
of 59 additional units to achieve the objective function of the optimized 90-unit
scheme. As mentioned previously, there is a clear trend associated with the nugget
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Figure 4.2 – Value of objective function for sc+ (black dots), sc (grey dots) and
optimized (red triangle) schemes. The spacing between the two vertical lines indicates
the number of extra units required for sc+ to achieve an optimized objective function

value for ν = 0.2.

Table 4.1 – Additional number of sampling units in the sc+ scheme required to
achieve the same objective function as that of the optimized 90-unit survey.

c0 c1 a ν = 0.2 ν = 0.5 ν = 1.1 ν = 2

0 1 10 8 8 9 8
1/3 2/3 10 20 10 7 5
2/3 1/3 10 59 34 24 19
0 1 20 2 6 8 11
1/3 2/3 20 8 3 4 8
2/3 1/3 20 25 16 18 23
0 1 30 2 6 11 16
1/3 2/3 30 10 5 11 15
2/3 1/3 30 25 25 11 20

74



4.3. Results

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

c0 � 0, c1 � 1 c0 � 1/ 3, c1 � 2/ 3 c0 � 2/ 3, c1 � 1/ 3
a
�

10
a
�

20
a
�

30

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Eastings [m]

N
o

rt
h

in
g

s 
[m

]

Figure 4.3 – Optimized 90-unit schemes for di�erent variogram parameters and
ν = 0.5.

to sill ratio. The larger is the ratio, the larger is the number of additional units in
the sc+ scheme. This e�ect was slightly diminished for increasing values of a.

Figure 4.9 shows the objective function for the sc and sc+ schemes for the case where
the smoothness parameter ν = 0.5 was either �xed (known) or estimated (with
uncertainty) with parameters c0 = 0, c1 = 1 and a = 20. When the smoothness
was estimated there was a marked di�erence between the total error variance for
the sc and sc+ schemes when there were fewer than about 200 sample points in
total. With larger sample sizes (above 220) the di�erence became negligible. When
the smoothness is known (equivalent to assuming an exponential variogram), there
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Figure 4.4 – Value of objective function for sc+ (black dots), sc (grey dots) and
optimized (red triangle) schemes. The spacing between the two vertical lines indicates
the number of extra units required for sc+ to achieve an optimized objective function

value for ν = 0.5.

were still minor di�erences between the sc and sc+ scheme objective functions but
they rapidly converged to the same values (from about 120 units).

Table 4.2 shows the minimum sample size required for the expected total variance
to be smaller than the estimation variance of the target property that would result
from a design-based survey of the same size. The sc+ schemes needed on average
fewer units than the sc schemes. There is a clear association between an increase in
the required sample size, increase of nugget to sill ratio and decrease in the smooth-
ness and distance parameters. When compared to the e�ective range of the target
property (i.e. the distance at which the spatially correlated portion of the variogram
attains 95% of the sill), the minimum number of units increased with decreasing
values of the e�ective range. The dispersion variance (denoted σ 2 in Table 4.2) in-
creased with larger values of nugget to the sill ratio and larger values of the distance
parameter.
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4.3. Results
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Figure 4.5 – Optimized 90-unit schemes for di�erent variogram parameters and
ν = 1.1.

4.3.2 Scenario 2

Figure 4.10 shows an example of sc, sc+, as well as the optimized 90-unit scheme
obtained by minimization of the expected total error using the average soil clay
variogram. The optimized scheme had sampling units dispersed evenly over the
area with a number of close-pair units. The number of close-pair units seems slightly
larger than that of the sc+ scheme. While the sc+ and optimized scheme share some
similarity in the pattern of sampling locations, the sc scheme is very di�erent from
the optimized scheme.

This is con�rmed by Fig. 4.11 which shows values of the objective function for sc+, sc
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4.3. Results
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Figure 4.6 – Value of objective function for sc+ (black dots), sc (grey dots) and
optimized (red triangle) schemes. The spacing between the two vertical lines indicates
the number of extra units required for sc+ to achieve an optimized objective function

value for ν = 1.1.

and optimized schemes using the average clay variogram. The sc scheme performed
poorly until about 200 units. In contrast, the sc+ had objective function values closer
to that of the optimized scheme. Twenty-two additional locations were required for
the sc+ scheme to reach the objective function of the optimized scheme, which was
achieved with a total of 11 close-pairs in the sc+ scheme (out of 112).

Figure 4.12 shows the standardized soil clay variograms and the average variogram.
First, the average variogram was used to compute the optimized scheme. Second,
we found the sample size for the sc+ scheme for each separate clay variogram to
achieve the total variance of the optimized scheme. Overall, the optimized scheme
was fairly robust with contrasting standardized soil clay variograms because it gave
about the same total variance for most of the individual variograms as for the aver-
age variogram. Fig. 4.12 shows that a large number of additional units were needed
(> 100) when large sill values of the variogram were reached in a short distance. In
addition, fewer units were needed (< −5) when the total sill was reached at large
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Figure 4.7 – Optimized 90-unit schemes for di�erent variogram parameters and ν = 2.

distances. For similar values of the distance parameter, more units were needed for
larger values of the nugget variance, e.g. weaker spatial dependence at short dis-
tances (see for example the two clay variograms with similar distance parameters
but di�erent nugget values).

4.4 Discussion

For all optimized schemes, there was a number of close-pair units. This shows
that sampling units at short distances had a critical e�ect on decreasing the total
expected error (which encompasses uncertainty in the variogram parameters and
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Figure 4.8 – Value of objective function for sc+ (black dots), sc (grey dots) and
optimized (red triangle) schemes. The spacing between the two vertical lines indicates
the number of extra units required for sc+ to achieve an optimized objective function

value for ν = 2.
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Figure 4.9 – Value of objective function for sc+ scheme (black dots) and sc scheme
(grey dots) for c0 = 0, c1 = 1, a = 20 and ν = 0.5. In (a) the smoothness parameter is to

be estimated while in (b) it is assumed to be known.
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Figure 4.10 – Example of 90-unit sc scheme (a), sc+ scheme (b) and optimized for the
average soil clay variogram (c).
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Figure 4.11 – Values of objective function for sc+ scheme (black dots) and sc scheme
(grey dots) and optimized (the red triangle). The spacing between the two vertical lines
in (b) indicates the extra units required for sc+ to achieve an objective function value

from the optimized scheme for the soil clay average variogram.

kriging variance). The number of close-pair units increased according to the nugget
to the sill ratio and to a lesser extent relative to the distance parameter. This was
an expected result, because a random variable with a small spatial correlation dis-
tance and large nugget to sill ratio had to be sampled at a large number of short
distance locations to ensure minimization of uncertainty in both variogram param-
eters and prediction error variances (Marchant and Lark, 2007a). This explains why
sc schemes performed poorly in all cases. The sc schemes lacked close-pair units
to estimate the spatial correlation over short distances which have a large e�ect on
total expected error. Sampling schemes containing a subset of 10% as close-pairs
(suggested by Lark and Marchant, 2018) provide a robust strategy to ensure a rea-
sonably small total expected error. In the case of a small distance parameter or large
nugget to sill ratio, 10% of close-pairs does not provide su�cient information and
it is better to either increase the ratio of units taken at short distances or to use an
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Figure 4.12 – Standardized variograms of soil clay. The dashed line represents the
average variogram. The colour de�nes the number of additional sc+ units required to

reach the same value of the objective function for each variogram as the scheme
optimized with the average variogram.

optimized scheme.

The test presented in Fig. 4.9 suggests that the importance of close pairs is reduced
if the smoothness parameter is assumed to be known. In practice, however, this was
not the case. Assuming a particular smoothness value (e.g. 0.5 for the exponential
variogram) for a regularly sampled soil property led to a substantial proportion of
the uncertainty being disregarded. This choice was somewhat subjective because it
was related to the decision of the modeller and the range of possibilities we allowed
in our model. We point out that close pairs are not only important when the nugget
to sill ratio is large (Table 4.1) and the range of spatial correlation (3 × a if ν = 0.5)
is small relative to the size of the study area (Table 4.2), but also when one needs to
estimate the additional Matérn model parameter ν (Fig. 4.9).

Results from our second scenario showed that the optimized scheme based on the
average variogram was fairly robust for contrasting soil clay variograms. For sev-
eral variograms, an sc+ scheme outperformed the optimized scheme. This was an
unexpected result at �rst sight. The reason is that the sampling scheme was opti-
mized for the average variogram, and can therefore be suboptimal for an individual
variogram. The results of the second scenario suggested that databases of vari-
ogram parameters (e.g. the one of Paterson et al., 2018) can be used to derive an
average variogram, and that the latter can be used to guide sampling (McBratney
and Pringle, 1999) or to predict a soil property from fewer units than usually re-
quired for estimating variogram parameters (Kerry and Oliver, 2004). An average
variogram could also provide prior information for expert or Bayesian elicitation of
the variogram (Cui et al., 1995).

83



Chapter 4. E�cient sampling for geostatistical surveys

In our two scenarios, close-pair units were taken at a �xed distance from one of the
spatial coverage units. There might be room for further research on how these close-
pair units should be selected. For example, in several optimized schemes, transects
of several units can be seen. Further tests on our scenario 1 (not shown) suggested
that selecting close pairs in a cluster might reduce substantially the number of ad-
ditional units needed with an increasing nugget to sill ratio. Such a scheme would,
however, rely heavily on the assumption of stationarity (i.e. that the short-scale
variation in the cluster indicates the short-scale variation across the study area).
Our results here were for ordinary kriging in which the local mean of the variable
was assumed to be constant. Sampling to support universal kriging (to model a
non-stationary mean), or to support kriging with external drift (to model depen-
dency of the mean on covariates) introduces other considerations, speci�cally the
estimation of the �xed e�ects parameters in the model. This requires further work.
We speculate that the supplemented spatial coverage schemes that we have shown
to be e�cient for ordinary kriging would also be e�cient for universal kriging, in
that the spatial coverage points would ensure reliable estimation of trend param-
eters, and the close-pairs would similarly ensure that the variance parameters are
estimated precisely

For the optimized schemes in scenario 1, derived from a variogram with a small dis-
tance parameter and large nugget to the sill ratio, the sample size seems too small
compared to the size of the study area. Table 4.2 shows that this is indeed the case
for several variogram types, and especially if the units are based on a spatial cover-
age scheme. This can lead to situations where the expected total variance is larger
than the total sill variance. In such circumstances adding close-paired observations
might resolve with the problem of parameter estimation, but the overall sampling
scheme remains inadequate for the task of spatial mapping because the spacing be-
tween neighbouring observations in the spatial coverage scheme is not su�ciently
small relative to the range of spatial dependence. If one kriges from a grid with
spacing larger than the range, then the prediction error variance is equal to the sill
variance plus the Lagrange parameter, which is equivalent to the second term for
the prediction variance of the spatial mean as a point predictor in Eq. 4.12. This
points us to the fact that, in these circumstances, where we cannot a�ord a grid
with spacing that is small relative to the range, spatial prediction by kriging is not
an option. In these circumstances point prediction might, in the worst case, be the
regional mean of the variable, estimated by design-based sampling and with a pre-
diction error variance computed from Eq. 4.12. It might be possible to do better by
estimating mean values within subregions of the area of interest such as soil map
units (Webster and Beckett, 1968), again by design-based sampling, or by undertak-
ing design-based sampling to estimate parameters of a predictive relation between
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the soil property of interest and covariates such as data from remote sensors. We
hope that this clari�es why we refer to design-based estimation in the paper. It is not
the case that design-based sampling does not provide a basis for spatial prediction.
Design-based simply refers to the sampling scheme (probability sampling) and the
basis for estimation from the data. The resulting design-based mean (for a region,
or subregion) may then be treated as a spatial prediction, as discussed by Webster
and Lark (2012).

Table 4.2 also shows that for large value of smoothness (ν = 1.1 or 2) and small
nugget to sill ratios, the minimum number of units needed to make geostatistical
analysis more accurate than a design-based estimate, on average, is surprisingly
small. This can be explained by the relatively large values of the e�ective range
(r = 60 and r = 57) for the case study (square of 100 m× 100 m); most sampling units
were within the range of spatial correlation. However, for random functions with
larger nugget to sill ratios, the design-based survey was more accurate even when
the survey consisted of more than 200 units. Thus, the number of units required to
estimate the variogram from a geostatistical survey depended on the degree of spa-
tial correlation of the target property. We acknowledge that these total prediction
variances are based upon a Taylor series approximation to the true variances.

4.5 Conclusions

From the results and discussion we draw the following conclusions:
— The sc schemes performed poorly in almost all cases because of the lack of

information at short distance to estimate the variogram parameters.
— Uncertainty of the sc scheme was mainly characterized by uncertainty of the

smoothness parameter. Performance of the sc scheme can therefore be greatly
improved by assuming that the smoothness is known, for example with an ex-
ponential variogram. However, in practice we have no justi�cation for mak-
ing such an assumption.

— The bene�t of using an optimized scheme over an sc+ scheme was clear but
still generally modest. In addition, the optimization required the variogram
parameters to be known.

— The bene�t of using an optimized scheme over an sc+ scheme became more
important with an increasing nugget to sill ratio (weaker spatial dependence).
In this case, geostatistical survey was unlikely to be e�ective.

— For a random variable with zero nugget and a large range of spatial correlation
fewer than 15 observations were required to obtain average total prediction
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variances that were smaller than the prediction variance of the design-based
estimate of the regional mean, treated as a point prediction at each location.
However, 200 observations of a random variable with a substantial nugget
e�ect were insu�cient to meet the same criterion.

— When the scale of spatial variation of the soil property was not known, using
an average variogram for optimizing the sampling scheme is a robust strategy.

— Overall, the tests conducted showed that there was little evidence of large
bene�ts from optimizing sampling schemes. Therefore, it is better in most
cases to use a spatial coverage scheme supplemented by a subset of close-pair
units unless prior knowledge of the variogram is available (e.g. reconnais-
sance survey).
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Chapter 5

Sampling design optimization for soil mapping
with random forest

Machine learning techniques are widely employed to generate digital soil maps. The map accuracy is

partly determined by the number and spatial locations of the measurements used to calibrate the ma-

chine learning model. However, determining the optimal sampling design for mapping with machine

learning techniques has not yet been considered in digital soil mapping studies. In this paper, we inves-

tigate sampling design optimization for soil mapping with random forest. A design is optimized using

spatial simulated annealing by minimizing the population mean squared prediction error (MSE). We ap-

plied this approach to mapping soil organic carbon for a part of Europe using subsamples of the LUCAS

dataset. The optimized subsamples are used as input for the random forest machine learning model, using

a large set of readily available environmental data as covariates. We also predicted the same soil property

using subsamples selected by simple random sampling, conditioned Latin Hypercube sampling (cLHS),

spatial coverage sampling and feature space coverage sampling. The process is repeated several times

using leave-group-out cross-validation so as to compute the calibration sampling distribution of the MSE

of maps based on di�erent sampling designs. Di�erences between MSE distributions are tested for signif-

icance using the non-parametric Mann-Whitney test. The process was also repeated for di�erent sample

sizes. We analysed the spread of the optimized designs in both geographic and feature space to reveal

their characteristics. Results show that optimization of the sampling design by minimizing the MSE is

worthwhile for small sample sizes. However, an important disadvantage of sampling design optimization

using MSE is that it requires known values of the soil property at all locations and as a consequence is

only feasible for subsampling an existing dataset. For larger sample sizes, the e�ect of using an MSE

optimized design diminishes. In this case, we recommend to use a sample spread uniformly in the feature

(i.e. covariate) space of the most important random forest covariates. The results also show that for our

case study cLHS sampling performs much worse than the other designs for mapping with random forest.

Based on:
Wadoux, A. M. J.-C., Brus, D. J. and Heuvelink, G. B. M. (2019). Sampling design

optimization for soil mapping with random forest. Geoderma. Accepted with revision.
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5.1 Introduction

Conventional digital soil mapping (DSM) employs geostatistical techniques to pre-
dict a continuous soil property at unobserved locations from measurements of this
property at a �nite number of sampling locations. Prediction is usually improved
by exploiting the quantitative empirical relationship between the soil property and
one or several environmental covariates. This leads to kriging with external drift, a
basic technique in geostatistics, in which a soil property is modelled as a sum of a
linear combination of covariates and zero mean, spatially auto-correlated residuals.
Kriging models the soil property in a comprehensive, statistically sound way, but
has several limitations (Webster and Oliver, 2007). First, it typically assumes that
the residuals are normally distributed, stationary and isotropic. Second, it considers
that the model of spatial variation (i.e. the variogram) is estimated without error. Fi-
nally, the relation between the soil property and the covariates is usually assumed to
be linear, and di�cult to model when using a large number of correlated covariates.

As an alternative, in recent decades (supervised) machine learning (ML) techniques
have been applied for spatial prediction and DSM. ML refers to a large class of non-
linear data-driven algorithms developed �rst for data mining and pattern recogni-
tion purposes. But ML is increasingly being used in other quantitative �elds, such
as in predictive soil mapping. ML techniques do not rely on rigid statistical as-
sumptions about the distribution of the soil property and can handle numerous and
correlated covariates as predictors, if at least a large calibration dataset is available.
Examples on the use of ML techniques for DSM are Henderson et al. (2005) for map-
ping multiple soil properties at national-scale using decision trees, Behrens et al.
(2005) for predicting soil units using arti�cial neural networks, and Grimm et al.
(2008) to map soil organic carbon using random forest. In this study we use the
latter technique, whose use for soil mapping was recently formalized in Hengl et al.
(2018).

Mapping requires calibrating a model using a sample from the target population.
In consequence, the map accuracy is partly determined by the sample size and spa-
tial locations of the sampling units with measurements of the target property used
to calibrate the model. Various sampling designs are potentially suitable, depend-
ing on the intended mapping technique. In most cases, the soil is mapped using
a known model of spatial variation (e.g. a variogram when using kriging). In this
context it is sensible to select a sample whose units are spread evenly throughout
the area. This can be achieved by spatial coverage sampling (Royle and Nychka,
1998; Walvoort et al., 2010). If one assumes that the soil property is linked to envi-
ronmental covariates, a robust strategy is to ensure that the measurements are also
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spread in the feature (i.e. covariates) space. This can be achieved using conditioned
Latin Hypercube sampling (cLHS) (Minasny and McBratney, 2006) or feature space
coverage sampling using the k-means (Hartigan and Wong, 1979) algorithm. The
spatial coordinates can be added to the set of covariates so as to ensure a spread
in both geographical and feature space. Brus (2019) noted that there is no single
best sampling design, and that the best design depends on the technique used for
mapping.

If the mapping technique is known beforehand, it is judicious to optimize a design
for the intended use. In a model-based setting, we obtain an estimate of the pre-
diction error variance, which can be minimized. For mapping with ordinary krig-
ing, this leads to a fairly uniform spread of the measurements in the geographic
space, which can be obtained using a spatial coverage design (Brus et al., 2007).
If one or several covariates are used as a trend in the kriging model, the opti-
mized design shows a spread of the measurements in both geographic and feature
space (Heuvelink et al., 2006). For mapping using ML techniques with covariates,
Brus (2019) recommends to select the sample using feature space coverage sampling
(FSCS) or cLHS. Both cLHS and FSCS aim for an even sampling density in the mul-
tivariate feature space, but that is done in di�erent ways. In cLHS it is done via
the marginal distribution and correlation matrix of the covariates, in FSCS through
minimization of a feature space distance criterion between sampling and predictions
points using thek-means algorithm. This might be advantageous for ML techniques,
which rely heavily on non-linear relations, but this has not yet been con�rmed by
experimental results. In machine learning, we do not have a model-based estimate
of the prediction error variance. Optimizing the sampling design is not straight-
forward, although it is possible to optimize the design using a universal prediction
accuracy measure (such as the mean square error (MSE) of the prediction). To the
best of our knowledge, little has been investigated on optimal sampling design for
mapping using random forest.

A relevant contribution was made in Tuia et al. (2013) which optimized the alloca-
tion of new climatological stations in a case study in Austria. In this study support
vector regression and active learning were used to derive the optimal locations of
new stations so as to select the most important sampling units to be included in the
sample, i.e. units that are used as support vectors. However, active learning is a se-
quential re-design technique which is appropriate to improve an already-calibrated
ML model. Tuia et al. (2013) provides little insight into where to select the sam-
pling locations when there is no prior ML model. In consequence, the conclusions
of this study are of little use for practitioners who wish to map soil properties using
machine learning.
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The objective of this study is to investigate what makes a design optimal (sample size
and sampling locations) for mapping using RF. To achieve this, we (i) estimate the
population MSE with various sampling designs (viz. simple random sampling, cLHS,
spatial coverage sampling (SCS), feature space coverage sampling (FSCS) and MSE
optimized); (ii) statistically test the di�erences in MSE distributions obtained with
maps based on di�erent designs; and (iii) reveal the characteristics of the optimal
design by analysing the spread of the sampling locations in both geographic and
feature space.

5.2 Materials and methods

5.2.1 Case study and data

We used the freely available soil database collected withing the framework of the
European land use/cover area frame statistical survey (LUCAS) (Tóth et al., 2013).
The LUCAS dataset is a sample of about 20,000 georeferenced topsoil (0-30 cm) mea-
surements of thirteen soil properties spanning 23 European countries. The sampling
density varies between 11 and 77 measurements per 10,000 km2 with an average of
48. The sample was collected by a two-stage systematic sampling design (Gallego
and Delincé, 2010) using a strati�cation based on seven land cover classes. The re-
sulting sample is spread fairly uniformly in space and within the di�erent land cover
classes. A map of the sampling locations is provided in Orgiazzi et al. (2018, Figure
1a). We used as target soil property the soil organic matter (SOC) concentration in
g kg−1 as measured by an automated vario MAX CN analyser (Elementar Analysen-
systeme GmbH, Germany) (Tóth et al., 2013). In this study, we treat the N LUCAS
topsoil SOC measurements as our population of interest. This means that we ignore
that the LUCAS units are a sample from the true area of interest, in our case the
European countries included in the survey. The LUCAS topsoil SOC data are split
randomly in three disjoint sets denoted calibration, validation and test sets. The
purpose of each set is explained later in this section.

In addition to the LUCAS SOC sample, we used a set of 197 readily available con-
tinuous environmental variables at resolution 1 km × 1 km as covariates. The list of
covariates is given in Hengl et al. (2017).

5.2.2 Random forest

Random forest (RF) is an ensemble machine learning method based on decision trees
(Breiman, 2001). A single decision tree is built by repeating a binary recursive par-
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titioning of the input training data. In the root node, the training data are grouped
into a single partition. All possible binary partitions of the training data are evalu-
ated using a splitting metric (Louppe, 2014). The binary split that has the smallest
metric is selected. The newly created partitions undergo the same procedure, until
a stopping criterion, the minimum node size, is met. The �nal prediction for con-
tinuous variable is taken as the average of the values of each the last decision tree
node.

Breiman (1996) introduced the bagging technique. Bagging stands for bootstrap
and aggregating, and aims at reducing the prediction error variance by building an
ensemble of regression trees. A large number of trees is built based on bootstrap
samples of the training data. All tree predictions are aggregated through averaging,
and these averages are taken as the �nal predictions. The RF algorithm elaborates
on this and introduces an additional random perturbation during the splitting of a
tree (Breiman, 2001). In each split, the partitioning considers only a subset of size
mtry from the original set of covariates.

The calibration of the RF model is therefore based on three user-de�ned parameters.
The �rst is the number of trees ntree. To avoid computational load in �ne-tuning
ntree for each model, we �xed ntree = 200, as a compromise between accuracy and
computational e�ciency. Lopes (2015) showed that in many cases 150 trees is su�-
cient to obtain stable results, in particular when the number of covariates is smaller
than the calibration sample size. The second parameter, mtry, is the number of co-
variates to randomly select at each split. By default, mtry is set to the rounded down
square root of the total number of covariates. The third parameter is the minimal
terminal node size (nodesize), which controls the minimum number of training data
required to continue the process of tree growth. Parameter nodesize was set to its
default value of 5.

5.2.3 Sampling designs

We compared �ve common spatial sampling designs.

Random: Simple random sampling (Cochran, 1977) of the soil property is the sim-
plest form of sampling technique which does not require any prior knowledge on
the soil property spatial variation. In simple random sampling, every unit of the
population has equal probability of being selected and sampling units are selected
independently. We used the sample function from the base package in the R lan-
guage (R Core Team, 2018) for selecting simple random samples.

Spatial coverage sampling (SCS): A SCS design aims at dispersing the units through-

93



Chapter 5. Sampling design optimization for soil mapping with random forest

out the study area as uniformly as possible (Royle and Nychka, 1998). Coverage
designs are created by minimization of a criterion that is a function of the distance
between sampling and prediction locations. Brus et al. (1999) proposed to compute
the mean of the squared shortest distance (MSSD), denoted MSSDG hereafter, be-
tween sampling locations and the centre cells of a �ne prediction grid as criterion
to obtain a spatial coverage design. This criterion can be minimized by the fast k-
means clustering algorithm. We implemented it with the R base function kmeans,
using the spatial coordinates of the whole study area as clustering variables. Since
our population of interest is the LUCAS dataset, the selected sampling units are
the LUCAS points closest (in geographic distance) to the centres of the geographic
clusters.

Feature space coverage sampling (FSCS): A FSCS design follows the same principle
as a spatial coverage design. However, in this case distances are measured in fea-
ture space instead of geographic space. Since covariates can have a very di�erent
scales, it is important to standardize them (zero mean and unit variance) so that the
criterion to be minimized becomes the mean squared shortest standardized distance
(MSSSD) (Brus, 2019), denoted MSSDF hereafter. Sampling the centre of the k-means
clusters ensures a uniform spread of the units in the multi-dimensional space of the
covariates. We derive a FSCS design using the base R function kmeans. Similar to
SCS, the LUCAS points closest (in standardized features space) to the centres of the
clusters are used as sampling points.

Conditioned Latin Hypercube sampling (cLHS): cLHS (Minasny and McBratney, 2006)
is a strati�ed random sampling procedure. For each covariate, n marginal strata are
de�ned using the quantiles of the cumulative frequency distribution, with n being
the sample size. Next, an optimization procedure minimizes the weighted sum of
two components (O1 and O3) so that each covariate contains one unit per stratum in
the multi-dimensional feature space (O1) and the correlation between the covariate
values in the sample and in the population is preserved (O3). Note that we do not use
component O2 because our case study has no categorical covariates. In cLHS, the
covariate marginal distribution of the sample is close to that of the population (Brus,
2019). Note that in this study cLHS designs were based on the 20 most important
covariates for RF. These covariates were derived from a RF model calibrated using
all LUCAS topsoil OC data (about 20,000 units). We refer to this design as the cLHS
(20) design, and compare it to the FSCS optimized on the same 20 most important RF
covariates (FSCS (20)). The most important covariates of the RF model are de�ned
using the Gini impurity index (Nembrini et al., 2018) as implemented in the ranger
package (Wright et al., 2017) in R. We used the R package clhs (Roudier, 2018) to
obtain a cLHS sample from the population. The default implementation in the clhs
package assigns equal weights to the O1 and O3 components.
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MSE optimized: In this case an optimized design is obtained by minimization of the
MSE between the predicted and measured SOC in the independent test set, from
a RF model whose parameters are estimated using a calibration set. The choice of
the minimization criterion is discussed more extensively in the Discussion. The
minimization is achieved by spatial simulated annealing (SSA) (Van Groenigen and
Stein, 1998; Wadoux et al., 2019a). For each iteration in SSA, a RF model is built,
which is subsequently used to predict at the test set locations. If the MSE is smaller,
the proposed sample is accepted, otherwise it is accepted with a probability that
decreases during the optimization. We used the function optimUSER from the R
package spsann (Samuel-Rosa, 2017). The total number of SSA iterations was set to
50 times the sample size.

Each of the �ve designs described above is evaluated by computing the MSE between
the SOC prediction and observation for an independent validation set. The RF model
is calibrated using the calibration set.

5.2.4 Estimation of the population MSE

We compute the population MSE for each design using a calibration sample of the
LUCAS dataset. Several sources of randomness are involved when computing the
population MSE, the �rst being the calibration sampling design: simple random
sampling and cLHS are random designs, i.e. units are selected randomly. SCS and
FSCS have some randomness due to their technical implementation (e.g. di�erent
initial solutions in k-means and convergence of the annealing schedule). The second
source of randomness is due to the random split of the LUCAS dataset into calibra-
tion, test (for the MSE optimized design) and validation sets. Thus, by repeating the
estimation of the MSE with a given sampling design and calibration/validation/test
sets, we obtain a sampling distribution of the MSE.

The procedure for estimating the MSE sampling distribution, for a given sampling
design and sample size n = 100, 200, 500 and 1000, is given as follows:
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for r = 1 to R do
Split the LUCAS dataset fully randomly into K disjoint subsets of equal
size (validation subsets);
for k = 1 to K do

De�ne the k-th subset as the validation subset. Merge the remaining
K − 1 subsets and split the merged set fully randomly into L disjoint
subsets of equal size (test subsets);
for l = 1 to L do

De�ne the l-th subset as the test dataset. Merge the remaining
L − 1 subsets;
form = 1 toM do

1. Select a sample of size n from the merged L − 1 subsets.
This is the calibration dataset. In case of the MSE optimized
sampling design, the sample is selected such that it minimizes
the MSE of the test dataset. In case of the other four designs
the test dataset is not used but a sample is selected according
to the criterion of the design (i.e. simple random sampling,
SCS, FSCS, cLHS).

2. Calibrate the RF model using the sample selected by the
design.

3. Predict at the locations of the validation dataset and compute
the squared prediction errors for all validation locations.

end
Average the M squared prediction errors at each validation
location.

end
Average the L averaged squared prediction errors at each validation
location.

end
Average the �nal averaged squared squared prediction errors over all
LUCAS locations, the outcome is a single estimate of the population
MSE value.

end
Plot the distribution and print summary statistics of the R estimates of the
population MSE.

Hereafter, the distribution of the R estimates of the population MSE as obtained
using this procedure for a given design and calibration sample size n is referred to
as the “MSE sampling distribution”. The values of R,K , L andM are chosen based on
the computational load and degree of randomness of each designs. When the design
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is more random, larger values of R, K , L and M are required. We chose R = 10 for
all designs except for the MSE optimized design, where we used R = 5. K and L are
set to 5 for all designs while M = 20 for the random and SCS designs, M = 10 for
the FSCS design and M = 1 for the cLHS and MSE optimized designs.

5.2.5 Statistical hypothesis testing

Given the MSE sampling distributions for each design, we tested for all pairs of
designs and all calibration sample sizes n whether the medians of the distributions
are signi�cantly di�erent using the Mann-WhitneyU test (Wilcoxon rank-sum test)
(Mann and Whitney, 1947). The Mann-WhitneyU test is a non-parametric test of the
null-hypothesis that two distributions have the same median. Thus, under the null
hypothesis a randomly selected value from one of the distributions has 50% chance
of being smaller or greater than a randomly selected value from the other distri-
bution. Contrary to the two independent samples t-test the Mann-Whitney U test
does not require the normality assumption of the distributions that are compared.
Signi�cant di�erences between MSE sampling distributions are characterized by a
signi�cance threshold �xed at a p-value smaller or equal than 0.05.

5.2.6 Diagnostics of the designs

Sampling designs are not only evaluated by the resulting MSE, but also by the spread
of the samples in the geographic and feature space. This is done with the aim to
reveal the characteristics of the designs, in particular the MSE optimized design,
which may help to design future surveys. Thus, all sampling designs are evaluated in
terms of all criteria, not just MSE, but also MSSDG, MSSDF and O1+O3 as minimized
in cLHS.

5.3 Results

5.3.1 MSE sampling distribution

Figure 5.1 shows the boxplot of the MSE values for all combinations of sampling
design and sample sizes. As expected, the MSE optimized design is always more ac-
curate than the other designs. This is particularly true for small sample sizes (e.g. 100
units) where the MSE optimized design has an MSE that is about 10% smaller than
that of a simple random sampling design. For small sample sizes (e.g. 100), simple
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random sampling and cLHS have the largest MSE (median is 7208 and 7174 (g kg−1)2

respectively) and FSCS has a somewhat smaller MSE (median is 7090 (g kg−1)2). This
pattern is preserved with larger sample sizes, but the di�erences in MSEs become
negligible as the sample size increases. For instance, the di�erence in MSE between
designs is smaller than 100 (g kg−1)2 for a sample size of 1000. Note that with cLHS
for all sample sizes tested, the sampling distribution of MSE not only has a large me-
dian value, about equal to that of simple random sampling, but also shows a large
variability. For example, the standard deviation of the MSE distribution for the cLHS
design and a sample size of 100 is 75 (g kg−1)2 while it is only 13 (g kg−1)2 for a simple
random sampling design of the same size.

5.3.2 Statistical hypothesis testing

Table 5.1 shows the result of the statistical hypothesis testing. Sampling designs
with median MSE that are not signi�cantly di�erent at α = 0.05 have the same
letter. The median MSE of the cLHS design is, for all sample sizes tested, not signi�-
cantly di�erent from the median MSE of the simple random design. In contrast, the
median MSE based on the MSE optimized design is always signi�cantly di�erent
from those of other designs. This is an expected result given that the correspond-
ing MSE distributions shown in Fig. 5.1 do not overlap (but note that the boxplots
shown in Fig. 5.1 are based on small samples of size 5 and 10 only). For sample size
100, the median MSE of the cLHS design is not signi�cantly di�erent from that of
the SCS design, and the median MSE between FSCS designs using all or the 20 most
important covariates are not signi�cantly di�erent. For sample size 500, the median
MSE of the SCS design is not signi�cantly di�erent from that of the FSCS design
using all covariates. Overall, it appears that parameters M and R were large enough
to detect signi�cant di�erences between designs.

5.3.3 Diagnostics of the designs

Figure 5.2 shows the distribution of the MSSDG for all designs and sample sizes.
Because the SCS design is optimized for this criterion it has always the smallest
median MSSDG compared to other designs, for the same sample size. FSCS designs
(optimized on all or the 20 most important covariates) have relatively small MSSDG
values. This may be because the spatial coordinates are also included as covariates
and hence used to optimize these designs. The simple random and MSE optimized
designs have the largest MSSDG values and also the largest MSSDG variability (stan-
dard deviation of 7.289 and 1.5110 m2 for a sample size of 100, respectively). The MSE
optimized design has on average the least uniform spread in geographic space, as
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Table 5.1 – Mann-WhitneyU test results for di�erences in median MSE obtained with
random forest models calibrated with samples of various designs and sample sizes.
Common letters indicate non-signi�cant di�erences at signi�cance level α of 0.05.

Sample size
100 200 500 1000

Simple random a a a a
cLHS (20) a b a a a
SCS b b b b
FSCS c c b c
FSCS (20) c d c d
MSE optimized d e d e

shown by the median MSSDG. This is the case for all sample sizes, even though the
di�erences in MSSDG among designs are negligible for large sample sizes.

Figures 5.3 and 5.4 show the MSSDF distributions, computed using all the covariates
or a subset containing the 10 most important covariates of the RF models, respec-
tively. Both �gures show, as expected, that FSCS designs have the smallest MSSDF
compared to other designs. All other sampling designs have similar MSSDF distri-
butions. A similar pattern is observed in Fig. 5.4: all designs (except FSCS designs)
have similar MSSDF distributions. Note that simple random and SCS designs have
a very large spread in the MSSDF, while the MSE optimized design has narrower
MSSDF distributions and very few outliers.

Figure 5.5 shows the distribution of the O1 + O3 cLHS criterion computed for each
of the designs and sample sizes. Note that in Fig. 5.5 the elements O1 + O3 are not
computed as sums but as means. This is discussed more extensively in the Discus-
sion. Since a cLHS design is optimized for this criterion, it has the smallest values
for all sample sizes. For large sample size, the simple random sampling design is
almost equivalent in terms of the cLHS criterion. The FSCS designs (using all or the
20 most important covariates) have always the largest value of the cLHS criterion.

Figure 5.6a indicates how often a sampling location is selected in the MSE optimized
design, where red colours correspond to a case where a sampling location is selected
more often than would be expected under a simple random sampling design and blue
colours indicate the opposite. Fig. 5.6b shows the proportion of sampling locations
used for calibration of the MSE optimized design. Red colours indicate that locally,
a relatively large number of sites were used for calibration, while blue colours in-
dicate that relatively few sites in the local neighbourhood were used for calibration
of the MSE optimized design. Areas with fewer than �ve LUCAS sites within the
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5.3. Results
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Chapter 5. Sampling design optimization for soil mapping with random forest
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5.3. Results
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Chapter 5. Sampling design optimization for soil mapping with random forest

local neighbourhood (100 km circular radius) were masked out. Fig. 5.6b shows that
the MSE optimized design leads to a fairly high relative density in a geographic
band spanning from France to Poland. Germany and Denmark have a high relative
density across their entire country. Great Britain, Ireland, southern and northern
Europe tend to have a lower relative density of sampling units included in the MSE
optimized design, even though they might locally have a very high absolute density
of sampling locations (e.g. North of Madrid).

5.4 Discussion

Impact of sampling designs on prediction accuracy

The sampling design had a signi�cant impact on the accuracy of random forest pre-
dictions. In the case study mapping topsoil OC using RF in Europe, the MSE opti-
mized design had the smallest mean squared prediction error, as shown in Fig. 5.1.
This is because the MSE optimized design was optimized for this purpose, by min-
imizing the MSE of the test set. All other designs reach substantially higher MSE
value than the MSE optimized design. However, the MSE optimized design can be
used only when subsampling an existing dataset with known values of the target
soil property at all locations. In other words, it may be used in a case where thinning
of an existing sampling network is required, but not in a case where one needs to
design a sampling scheme from scratch, such as in a reconnaissance survey. In this
case, it is best to use a FSCS design which, for the case study, had the smallest pre-
diction MSE of all other designs tested. This is not surprising because predictions
made by machine learning methods rely on non-linear relationships with covariates,
and estimation of these relationships bene�ts from a spread of the sampling units in
feature space, as noted by Brus (2019). To our surprise the MSE values obtained with
cLHS design were large (Fig. 5.1) and not statistically di�erent from those obtained
using simple random sampling (Table 5.1). This is discussed more extensively later
in this Discussion. In spite of the di�erences in MSE between designs for small sam-
ple sizes, the MSE between designs for large sample sizes (in our case study larger
than 1 unit per 4, 159 km2) are negligible. This result applies to our case study us-
ing the LUCAS dataset as the population of interest, but is likely also valid more
generally: increasing the sample size reduces the MSE di�erences between designs
because the selected sample covers all cases su�ciently well.
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5.4. Discussion

Design diagnostics

In practice we cannot obtain an MSE optimized design because this requires that
the target property is known at all locations in the study area. This is why it is use-
ful to interpret and diagnose the MSE optimized designs obtained in the case study,
because if general patterns can be derived then these may be used to design spatial
sampling designs for DSM using RF. Diagnostics on the MSE optimized designs re-
veal that RF does not bene�t much from a spread of the sampling units in geographic
space (Fig. 5.2). One possible reason is that spatial location is ignored during the RF
modelling process (Hengl et al., 2018) and in other machine learning techniques
(Behrens et al., 2018b). Fig. 5.3 and 5.5 show that, in addition, RF neither bene�ts
much from a spread of the sampling units in the feature (i.e. covariate) space, nor
from reproducing the marginal distributions of the covariates. This is unexpected
because many studies (e.g. Castro-Franco et al., 2015; Domenech et al., 2017; Brus,
2019) suggested that spread in the feature space is crucial. In fact, it is more subtle
than that. We learn from Fig. 5.4 that the importance of the covariates used in the RF
model must be taken into account as well. This is an important �nding of this study:
the predictions made by a RF model bene�t from a design spread uniformly in the
space spanned by the most important covariates. We acknowledge that this �nding
is based on a single case study and needs to be tested in further research. If this
�nding is con�rmed by future studies, one can derive practical recommendations to
design a soil survey for mapping with RF: (i) determine what are the most important
covariates, either using a legacy sample, previous studies, pedological expertise or a
two-stage sampling approach; and (ii) optimize the design using coverage sampling
in covariate space for the important covariates (possibly using weights derived from
the importance).

Conditioned Latin Hypercube sampling design

While it was shown above that RF bene�ts from a uniform spread of the sampling
locations in the feature space of the most important covariates, predictions based on
the cLHS design were as accurate as those based on a simple random sampling de-
sign and worse than predictions obtained using all other designs. Apparently, sam-
pling the marginal distribution of the covariates is not a useful strategy for mapping
with RF. The criterion values in Fig. 5.3 and 5.5 show that the cLHS and FSCS de-
signs are very di�erent in the way they spread the sampling units in feature space.
We showed in this study that this has a major impact on the resulting prediction
accuracy, and that cLHS sampling is not recommended for mapping using RF. Note
that in this study we used the cLHS implementation from the R package of Roudier
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(2018) following the Minasny and McBratney (2006) paper, where the O1 and O3
components are computed as sums, not as means. The resulting criterion is there-
fore a�ected by the magnitude of the O1 and O3 components. To solve this problem,
other implementations (e.g. Samuel-Rosa, 2017) compute O1 as the mean of the ab-
solute deviations between the marginal strata sample size and targeted sample size,
while O3 is computed as the mean of the deviations over all o�-diagonal entries of
the correlation matrix. Taking the latter into account will potentially have an im-
pact on the performance of the cLHS design. However, we did not consider it in this
study.

Optimization criteria

In our case study, the MSE optimized design was derived based on the MSE between
predicted and measured SOC values in the test dataset. The MSE is a universal crite-
rion which can be computed for any mapping method, also in a case where we do not
have a model-based estimate of the prediction error variance. If a model-based esti-
mate of the prediction error variance is available, we can use a function of the pre-
diction error variance as minimization criterion. Obvious candidates for such func-
tion are the spatial mean (Brus and Heuvelink, 2007) and maximum (Van Groenigen
et al., 1999) prediction error variance. For the RF model used in the case study, the
prediction error can be quanti�ed by quantile regression forest (QRF) (Meinshausen,
2006), for instance using the width of the 90% prediction interval. We explored this
and used the average width of the QRF 90% prediction interval over the study area
(i.e. the 23 EU countries included in this study) as a minimization criterion. How-
ever, we observed that the sampling units of the optimized design had a narrow
SOC distribution and small SOC variance. These sampling units were selected be-
cause this resulted in narrow QRF predicting intervals and hence a small criterion
value. As a result, validation of the quanti�ed uncertainty (e.g. using accuracy plots
Deutsch, 1997; Wadoux et al., 2018) showed that the uncertainty was systematically
and severely underestimated. Thus, we did not pursue this any further.

Sampling for other machine learning techniques

Finally, there is a need to further investigate whether a design that is optimal for
RF modelling is also optimal for other machine learning models. Our results were
obtained for a tree-based model. We hypothesize that a design that is optimal for
RF may also be e�cient for modelling and predicting using other tree-based mod-
els (e.g. CART Breiman, 2017), because they are comparable in their basic structure
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and splitting metrics. Sampling to support other machine learning models (e.g. sup-
port vector machine or deep neural network) introduces additional considerations
and deserves further investigation. For example, Pozdnoukhov and Kanevski (2006)
and Tuia et al. (2013) optimized a network for mapping using support vector ma-
chine. They speci�cally aimed at minimizing the “risk” of selecting new sampling
units that do not have a valuable contribution to the model (by becoming support
vectors). Recently, Wadoux (2019) showed how a deep neural network can be used
for soil mapping, and how the minimized loss function can be modi�ed to include
additional information (e.g. to quantify the prediction uncertainty). Formulating a
loss function that searches for optimal units to be measured using the feature (i.e.
covariates) space has been tackled by MacKay (1992). How much a design optimal
for a neural network model would di�er from that of a RF model requires further
study. This would certainly make a valuable contribution to future DSM studies.

5.5 Conclusion

We computed an MSE optimized design for mapping with RF and compared it to
several commonly used sampling designs. We compared the designs in terms of both
prediction accuracy and spread of sampling units in geographic and feature space.
In a case study, we used the LUCAS topsoil OC measurements as our population of
interest, from which subsamples were collected. From the results and discussion we
draw the following conclusions:

— An MSE optimized design provides the smallest mean squared prediction er-
ror. However this is feasible only in case of subsampling an existing dataset
with known values of the target soil property at all locations.

— In terms of accuracy, a sample selected by feature space coverage sampling of
the most important covariates had the closest match with the MSE optimized
design.

— For large sample sizes, the di�erences between prediction accuracies of dif-
ferent designs become negligible. In our continental scale case study, this was
for a sampling density greater than 1 sampling unit per about 4,000 km2.

— A conditioned Latin Hypercube sampling (cLHS) design is not a good choice
for mapping using RF. In our case study, predictions based on a cLH sample
had the poorest prediction accuracy, similar to that of predictions based on a
simple random sample.

— Diagnostics on the MSE optimized design showed that for RF the optimal sam-
pling design is not achieved by a uniform spread of the sampling units in the
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geographic and/or feature (i.e. covariate) space, nor from reproducing the
marginal distributions of the whole set of covariates.

— Further diagnostics of the MSE optimized design showed that the importance
of the covariates used in the RF model must be taken into account when opti-
mizing the spatial sampling design. RF bene�ts from a spread of the sampling
units uniformly in the feature space of the most important covariates of the
RF model. The most important covariates can be selected using a sample from
a reconnaissance survey, by pedological expertise or by a two-stage sampling
strategy.
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Chapter 6

Optimization of rain gauge sampling density
for discharge prediction using Bayesian

calibration

Stream discharges are often predicted based on a calibrated rainfall-runo� model. The major sources of

uncertainty, namely input, parameter and model structural uncertainty must all be taken into account

to obtain realistic estimates of the accuracy of discharge predictions. Over the past years, Bayesian cal-

ibration has emerged as a suitable method for quantifying uncertainty in model parameters and model

structure, where the latter is usually modelled by an additive or multiplicative stochastic term. Recently,

much work has also been done to include input uncertainty in the Bayesian framework. However, the

use of geostatistical methods for characterizing the prior distribution of the catchment rainfall is un-

derexplored, particularly in combination with assessments of the in�uence of increasing or decreasing

rain gauge network density on discharge prediction accuracy. In this paper we integrate geostatistics and

Bayesian calibration to analyse the e�ect of rain gauge density on discharge prediction accuracy. We cal-

ibrated the HBV hydrological model while accounting for input, initial state, model parameter and model

structural uncertainty, and also taking uncertainties in the discharge measurements into account. Results

for the Thur basin in Switzerland showed that model parameter uncertainty was the main contributor to

the joint posterior uncertainty. We also showed that a low rain gauge density is enough for the Bayesian

calibration, and that increasing the number of rain gauges improved model’s prediction until reaching

a density of one gauge per 340 km2. Based on the results, we make recommendations on how to handle

input uncertainty in Bayesian calibration for discharge prediction.

Based on:
Wadoux, A. M. J.-C., Heuvelink, G. B. M., Uijlenhoet, R. and de Bruin, S. (2019).

Optimization of rain gauge sampling density for discharge prediction using Bayesian
calibration. Water Resources Research. Accepted with revision.
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6.1 Introduction

Uncertainty analysis has garnered considerable attention in hydrological modelling
during the past decades (e.g. Pappenberger and Beven, 2006; Han and Coulibaly,
2017). There is agreement on the necessity to provide (realistic) uncertainty bounds
to end-users and practitioners (Beven, 2006; Andréassian et al., 2007). Brown and
Heuvelink (2005) de�ne uncertainty as an expression of con�dence about how well
we know the "truth". Similarly, Maskey (2004) de�nes uncertainty as a measure of
the information about an unknown quantity to be measured or a situation to be
forecast, and discusses the nature of di�erent potential sources of uncertainty and
their e�ect on �ood forecasting.

It is generally recognized that three principal sources of uncertainty cause uncer-
tainty in model output: model input uncertainty (including initial state and bound-
ary conditions), model parameter uncertainty and model structural uncertainty
(Refsgaard et al., 2007; Van der Keur et al., 2008). For example, Højberg and Ref-
sgaard (2005) found that parameter uncertainty cannot fully cover model structural
uncertainty, while Tian et al. (2014) showed that parameter uncertainty for three
rainfall-runo� models tested on two catchments has a larger contribution to model
output uncertainty than model structural uncertainty. Kavetski et al. (2006) found
that input (rainfall) uncertainty has a considerable e�ect on the predicted out�ow
and output prediction intervals. In addition to these three main sources, there is
usually also uncertainty in the measurements of the model output (Di Baldassarre
and Montanari, 2009). This source of uncertainty must be taken into account if these
measurements are used to calibrate the model.

Explicit integration of all sources of uncertainty is not an easy task. This prob-
lem has been tackled using approaches such as the pseudo-Bayesian generalized
likelihood uncertainty estimation (GLUE) methodology (Beven et al., 2000), the in-
tegrated Bayesian uncertainty estimator (IBUNE) (Ajami et al., 2007) and by using
Bayesian total error analysis (BATEA) (Kavetski et al., 2006). In general, Bayesian
analysis has received wide attention because it provides a comprehensive and gen-
eral framework to specify uncertainty explicitly using probability distributions. It
also fosters easy updating of distributions when additional information comes avail-
able. The main steps of a Bayesian uncertainty framework are summarized as fol-
lows (Kennedy and O’Hagan, 2001): (1) an explicit probability model is speci�ed
for each uncertainty source (input, model parameters, model structure), based on
prior information; (2) measurements of the model output are used to update the
prior distributions to posterior distributions, typically using Markov chain Monte
Carlo techniques; (3) the posterior distributions are used to propagate uncertainty
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in model input, model parameters and model structure to model output for (future)
cases where model output is not observed; (4) results are tested against independent
validation data to evaluate whether the assumptions made as part of the procedure
are realistic.

Numerous studies on Bayesian uncertainty analysis for distributed and physically
based hydrological models have been conducted and published. There is general
agreement that rainfall-runo� data are often insu�cient for supporting reliable in-
ference for complex models involving many spatially distributed physical catch-
ment processes (Beven, 2006; Renard et al., 2010). Wagener et al. (2001) refers to
“non-identi�ability” leading to “ill-posed” inference of the parameters, which can
be avoided by using simpler (lumped) hydrological models with fewer parameters.
Lumped hydrological models consider the quantity of interest (e.g. discharge) to
be derived from catchment-averaged inputs (e.g. rainfall, potential evapotranspira-
tion). Model inputs often contain substantial error which a�ect model output. In
general, input uncertainty in lumped models is mainly caused by measurement and
interpolation errors. For instance, rainfall measurements obtained using rain gauges
are not error-free (Habib et al., 2001), while interpolation error is added when rain
gauge measurements at point locations are aggregated to spatial averages as needed
in lumped rainfall-runo� models. In the case of rainfall, radar images provide time
series of spatial rainfall �elds, thus avoiding interpolation error, but these often suf-
fer from complex spatio-temporal errors which make them inaccurate in some cir-
cumstances (Cecinati et al., 2017). Thus, rainfall point observations remain a major
source for estimating catchment-average rainfall.

There is a recent trend towards a decrease of hydrometric network density (Mishra
and Coulibaly, 2009; Keum and Kaluarachchi, 2015). Yet, the uncertainty in average
rainfall strongly depends on rain gauge sampling density (Xu et al., 2013; Terink
et al., 2018). Hence, a reduction of the rain gauge density will increase the uncer-
tainty about the discharge predicted by the rainfall-runo� model. Renard et al. (2011)
used a geostatistical model to infer the catchment-average rainfall and the associ-
ated uncertainty from the rain gauges using block kriging. Next, they used the block
kriging conditional distribution as a prior in the Bayesian calibration of a lumped
rainfall-runo� model. Taking prior knowledge on input uncertainty into account
overcomes ill-posedness and signi�cantly improved the accuracy of the runo� pre-
dictions (Renard et al., 2010). Clearly, the higher the rain gauge density the narrower
the block kriging prior. Thus, a di�erent sampling density leads to a di�erent prior
and posterior and ultimately to a di�erent output uncertainty distribution. To the
best of our knowledge, little has been done to investigate the e�ect of rain gauge
density on the model output uncertainty within a Bayesian framework.
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The objective of this work is to evaluate the e�ect of rain gauge sampling density on
uncertainty in the output of a lumped rainfall-runo� model. The methodology used
relies on geostatistics to quantify prior input uncertainty and on Bayesian calibra-
tion for model parameter and model structural uncertainty quanti�cation. We cali-
brate the lumped HBV model (Lindström et al., 1997) using a Bayesian uncertainty
framework that accounts for input, parameter, output observation, initial state and
model structural uncertainty. Model residuals comprising model structural uncer-
tainty and discharge error are characterized using a time series model, while Markov
chain Monte Carlo methods are used to obtain posteriors of the input, model and
initial state parameters. The propagation of uncertainties associated with the model
input, model parameters and model structure is then analysed using regular Monte
Carlo methods. Several rain gauge density scenarios were tested, each time recal-
ibrating the model and providing discharge predictions with uncertainty intervals.
Rainfall posterior intervals as well as model predictive abilities were assessed and
discussed. The approach was tested in a case study using ten-day average rainfall
and discharge data of the 1696 km2 Thur basin in Switzerland for the years 2004 to
2011.

6.2 Methods

6.2.1 Rainfall-runo� model

Consider a hydrological model H that predicts stream discharge from catchment
average rainfall. Let y = [y1 y2 . . .yT ]T and z = [z1 z2 . . . zT ]T be time series
of measured discharge and (known) catchment average rainfall, respectively. We
assume that the relation between y and z, which is governed by the model H , is
a�ected by multiplicative measurement and model structural errors, which after
log-transformation gives:

log(y) = log(H (z,φ)) + ε + η (6.1)

where φ is a vector comprising model parameters and the initial state,
ε = [ε1 ε2 . . . εT ]T is log-transformed model structural uncertainty and η =

[η1 η2 . . .ηT ]T is log-transformed discharge measurement error. Uncertainty in
model input (i.e. z) and model parameters (i.e. φ) will be introduced in the next
section. We assume that the ηt (t = 1 . . .T ) are independent and identically dis-
tributed normal variates, with zero mean and constant variance σ 2

η .
It is unrealistic to assume temporal independence for ε and hence we represent it
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by a �rst-order autoregressive model (AR(1)):

εt = β0 + β1 · εt−1 + δt , t = 1 . . .T ε0 ∼ N(µ0,σ
2
0 ) (6.2)

where the δt (t = 1 . . .T ) are independent and identically distributed normal vari-
ates, with zero mean and constant variance σ 2

δ . The parameters that characterize ε
are merged into a parameter vector θ = {β0, β1,σ

2
δ , µ0,σ

2
0 }. In this study, µ0 and σ 2

0
are assumed known since their e�ect is typically negligible after a few time steps.
We also assume that ε and η are mutually independent.

To simplify notation we de�ne u = log(y) − log(H (z,φ)) and obtain:

u = ε + η (6.3)

6.2.2 Bayesian uncertainty framework

Conventional estimation of parameters φ, θ and σ 2
η using Bayesian calibration

(Beven and Freer, 2001; Kavetski et al., 2006) starts by using Bayes’ law to derive
that the posterior distribution of the parameters is proportional to the product of
the likelihood of the observed residuals u and the prior distribution of the parame-
ters:

p(φ,θ ,σ 2
η |u) =

p(u|φ,θ ,σ 2
η) · p(φ,θ ,σ 2

η)
p(u) ∝ p(u|φ,θ ,σ 2

η) · p(φ,θ ,σ 2
η) (6.4)

where p(φ,θ ,σ 2
η) is a joint prior for the rainfall-runo� model parameters and the

model structural and measurement uncertainty parameters. We further assume in-
dependence between the priors, i.e. p(φ,θ ,σ 2

η) = p(φ) · p(θ ) · p(σ 2
η).

We extend the conventional approach by considering the case where the model in-
put (i.e. the catchment-average rainfall) is also uncertain. Since model output and
input are not independent (as is obvious from Eq. 6.1) we have p(z|y) , p(z), which
implies that model output observations (or observed residuals) should be used to
update the probability distribution of the model input, just as these are used to up-
date the distributions of the parameters of the rainfall-runo� model and the model
structural and measurement uncertainty. This can be achieved by adding z to the
parameters, so that Eq. 6.4 is replaced by:

p(φ,θ ,σ 2
η , z|u) ∝ p(u|φ,θ ,σ 2

η , z)p(φ)p(θ )p(σ 2
η)p(z) (6.5)

Note that here we further assume that (unconditional to u) the parameters φ, θ
and σ 2

η are independent of z. The model parameter priors p(φ) can be derived from
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expert judgment and may be centred around deterministically calibrated parameter
values, while uninformative (i.e. wide) priors are typically chosen for θ and σ 2

η . The
remaining terms of the right-hand side of Eq. 6.5 are the likelihood p(u|φ,θ ,σ 2

η , z)
and the prior for z. We work these out in the next two subsections, starting with
the latter.

Rainfall prior

The rainfall priors for all time instances were derived using a geostatistical ap-
proach. Let zt (s) denote the rainfall at location s in the catchment A at time
t ∈ {1 . . .T }. We treat zt = {zt (s)|s ∈ A} as a realization of a random �eld Zt .
We further assume that log(Zt ) is a stationary normally distributed random �eld,
characterized by a (constant) mean and isotropic variogram γ (h) (where h is geo-
graphical distance). Since it is unrealistic to assume that log(Zt ) has the same sta-
tistical properties for all times t , in the case study we classi�ed all times into a �nite
number of classes that are judged su�ciently homogeneous with respect to rainfall
intensity, and assumed constant statistical properties within each class. Note that
while we include spatial autocorrelation, we ignore temporal autocorrelation. In
other words, we assume that the correlation between log(Zt (s)) and log(Zt+v (s+h))
is zero if v , 0. Ignoring temporal autocorrelation is acceptable if the temporal
support of rainfall data is su�ciently large (Cecinati et al., 2017) (in the case study
we consider rainfall accumulated over ten days). Estimation of the variogram γ (h)
for each rainfall intensity class may be done using the conventional Methods of
Moments estimator and by pooling sample variograms derived for all time instants
within the same rainfall intensity class (Muthusamy et al., 2017).

To sample from the distribution of Zt we use conditional sequential Gaussian sim-
ulation (cSGS) (Cressie, 2015). For each time instant t , we �rst simulate �elds of
log-transformed rainfall, conditional to the observations log(zt (si )), i = 1 . . .n,
where n is the number of rain gauge locations. Next we back-transform these �elds
to the original scale to obtain conditional rainfall simulation �elds zlt = {zlt (s)|s ∈
A}, l = 1 . . . L, where L is the number of simulated �elds. Finally, each simulated
�eld is spatially aggregated to obtain catchment average rainfall simulations:

zlt =
1
|A|

∫
s ∈A

zlt (s)ds (6.6)

In practice, the integral in Eq. 6.6 is approximated by a summation over a (su�-
ciently dense) spatial grid. The simulations zlt are also generated on this same grid.

The set of L simulations of catchment average rainfall provides an empirical repre-
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sentation of the prior distribution of zt for all t , which is an accurate approximation
of the true prior if L is su�ciently large. The empirical prior cumulative distribution
of zt is then given by:

Fzt (a) =
1
L

L∑
l=1

I (zlt ≤ a) (6.7)

where I is an indicator function equal to 1 if its argument is true and 0 otherwise.

Likelihood function

Deriving the likelihood p(u|φ,θ ,σ 2
η , z) is a major step in the Bayesian model cali-

bration. For notational convenience we will drop the conditioning information in
this subsection and write u instead of {u|φ,θ ,σ 2

η , z}, but note that because of the
conditioning information u satis�es Eq. 6.3, with all parameters of ε and η known.
We start by writing the joint distribution of u as a product of conditional distribu-
tions:

p(u) = p(u0) · p(u1 |u0) · p(u2 |u0,u1) . . .p(uT |u0 . . .uT−1) (6.8)

Because u is the sum of ε and η it cannot be written as an AR(1) model and does not
satisfy the Markov property (Durbin and Koopman, 2012). The conditional distribu-
tions can therefore not be reduced to a simple form. Instead, we use a Kalman �lter
approach (Kalman, 1960) to evaluate the conditional distribution in Eq. 6.8. Since all
stochastic variables involved are normal the conditional distributions are also nor-
mal, leaving only their means and variances to be determined. These are derived in
a recursive way (t = 1 . . .T ):

ε̂+0 = E [ε0] = µ0, σ 2+
0 = var(ε0) = σ 2

0 (6.9)

ε̂−t = β0 + β1ε̂
+
t−1 (6.10)

σ 2−
t = β

2
1σ

2+
t−1 + σ

2
δ (6.11)

ε̂+t = ε̂
−
t + kt (ut − ε̂−t ) (6.12)

σ 2+
t = (1 − kt )σ 2−

t (6.13)

kt =
σ 2−
t

σ 2−
t + σ

2
η

(6.14)
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Here, ε̂−t = E[εt |u0 . . .ut−1] is the time update, ε̂+t = E[εt |u0 . . .ut ] the measurement
update and kt is the Kalman gain. The prediction error variances associated with ε̂−t
and ε̂+t are given by σ 2−

t and σ 2+
t , respectively. Obtaining the mean and variance of

{ut |u0 . . .ut−1} is now easy and given by:

E [ut |u0 . . .ut−1] = ût = ε̂−t (6.15)

var(ut |u0 . . .ut−1) = σ 2−
t + σ

2
η (6.16)

The log-transformed conditional distribution at time t > 0 is thus given by:

log(p(ut |u0, . . . ,ut−1)) = −
1
2 log(2π ) − 1

2 log(σ 2−
t + σ

2
η) −

1
2

{
(ut − ût )2

σ 2−
t + σ

2
η

}
(6.17)

while for t = 0 we have u0 ∼ N(µ0,σ
2
0 +σ

2
η). Taking the logarithm of Eq. 6.8 implies

that we must sum over all time steps so that the log-likelihood is given by (de�ning
µ̂0 = µ0 and σ 2−

0 = σ
2
0 ):

log(p(u)) = −T + 1
2 log(2π ) − 1

2

T∑
t=0

(
log(σ 2−

t + σ
2
η)

)
− 1

2

T∑
t=0

(
(ut − ût )2

σ 2−
t + σ

2
η

)
(6.18)

Markov chain Monte Carlo

The proportionality sign in Eq. 6.5 means that the posterior on its left-hand side dif-
fers from the right-hand side by a multiplicative constant. This constant is unknown
(that is to say, it can only be obtained using formidable computer power) and hence
the posterior cannot be determined explicitly. To overcome this problem a common
approach is to sample from the posterior distribution p(φ,θ ,σ 2

η , z|u) using Markov
chain Monte Carlo (MCMC). In this paper we use the Metropolis algorithm, which
may not be the most e�cient approach but perfectly valid and relatively easy to
implement. It is described in detail in Brooks et al. (2011). Thus, a large sample N

of the joint posterior distribution of (φ,θ ,σ 2
η , z) is generated, where N is typically

taken in the range 104 to 105. Convergence can be assessed by running several inde-
pendent Markov chains and checking that the sample distributions are su�ciently
similar (Gelman et al., 2014). Another important performance indicator is the ac-
ceptance rate, i.e. the number of accepted proposals divided by the total number
of proposals. We manually tuned the size of the jump in the parameter space to
obtain an acceptance rate between 0.25 and 0.5 (suggested by Rosenthal et al., 2011)
to obtain su�cient exploration of the parameter space without grossly deteriorat-
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ing e�ciency. The acceptance rate was calculated after removing the �rst set of
proposals, also called the burn-in phase.

6.2.3 Prediction

Once the joint conditional posterior distribution of all parameters and the
catchment-average rainfall (Eq. 6.5) has been obtained, it can be used for discharge
prediction. To derive the prediction, it is important to distinguish between the true
discharge d and the measured discharge y. From the model de�ned in Eq. 6.1 it fol-
lows that the log-transformed true discharge log(d) = log(y) − η is the sum of the
log-transformed model output H (z,φ)) and the log-transformed model structural
uncertainty ε . Using the law of total probability, the probability distribution of the
discharge can be written as:

p(d) =
∭

p(d|φ,θ , z) · p(φ,θ , z) dφdθdz (6.19)

This multi-dimensional integral is usually solved numerically using Monte Carlo
sampling. Since log(d) = log(H (z,φ)) + ε , sampling from p(d|φ,θ , z) involves a
deterministic run of the rainfall-runo� model and simulating a realization from the
AR(1) model of ε . One might think that realizations of the posterior p(φ,θ , z) are
already available from the MCMC sampling, described in Section 6.2.2, but this is not
the case. The problem is that realizations of this posterior are only available for the
calibration period, i.e. a time period with discharge measurements. Since prediction
is only needed for time periods without discharge measurements, we consider a
case in which there are no discharge measurements at or near the prediction time.
Hence, there are no realizations of the posterior p(φ,θ , z) for a time period without
discharge measurements either. To make the distinction between the calibration
and prediction periods explicit, let the prediction period be from t = T + V + 1 to
t = T + V +W , where V is typically larger than the catchment response time. We
denote the catchment-average rainfall for the prediction period by z+. Thus, we
derive p(d+) from the (posterior) distribution of φ, θ and z+ using Eq. 6.19, with d
replaced by d+ and z replaced by z+.

We consider three approaches to derive a “posterior” distribution p(φ,θ , z+):
1. For φ and θ , use the MCMC sample of their joint posterior as explained in

Section 6.2.2. For z+, apply a linear correction to its prior mean as follows:

µzpo+
= aµzpr+

+ b (6.20)

where the coe�cients a and b are derived by �tting a linear regression be-
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tween the means of the rainfall posterior distribution µzpo and the means of
the rainfall prior distribution µzpr for the calibration period. A similar ap-
proach is used in Huard and Mailhot (2008, Section 5.1). Thus, realizations
zlt of the rainfall prior are converted to realizations z̃lt of the “posterior” by
shifting the means, while keeping the same shape and standard deviation:

z̃
l
t = zlt − µzpr + µzpo = zlt + (a − 1)µzpr + b (6.21)

This approach has the disadvantage that only the mean is corrected, using a
simple linear transform. It is not obvious how the correction can be improved.
Another disadvantage is that the posteriors ofφ and θ are decoupled from that
of z+. In other words, they are made statistically independent.

2. For φ and θ , use the MCMC sample from their joint posterior as explained
in Section 6.2.2. For z+, let the posterior distribution be identical to its prior.
This approach has the disadvantage that the posteriors of φ and θ are again
decoupled from that of z+.

3. Ignore that discharge measurements inform catchment-averaged rainfall and
exclude z from the Bayesian calibration. Thus, the prior distribution of z+ as
derived using block kriging is used as in Approach 2, but unlike in Approach
2 the parameters φ and θ are calibrated without including z in the calibration
procedure. The disadvantage of this approach is that it ignores that rainfall
and discharge are dependent, but it has two important advantages. First, there
is no interference between calibration of model parameters and rainfall input,
which causes problems in the prediction period. Second, the overall number
of parameters to be calibrated is much smaller compared to the case in which
rainfall input is to be calibrated as well. While this approach essentially boils
down to Eq. 6.4, rainfall uncertainty during the calibration period must be
taken into account. This is achieved by integrating the likelihood in Eq. 6.4
over all realizations of the rainfall z:

p(u|φ,θ ,σ 2
η) =

∫
p(u, z|φ,θ ,σ 2

η) dz =
∫

p(u|φ,θ ,σ 2
η , z) · p(z) dz (6.22)

Note that here we used the fact that z is independent of the model parameters.

6.2.4 Validation measures

To evaluate the methodology it is necessary to statistically validate the discharge
predictions and associated prediction uncertainty using independent discharge mea-
surements. We do so for the prediction period, since discharge measurements during
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this period were not used for calibration and prediction. However, since discharge
measurements are not error-free, the validation must take discharge measurement
error into account. Discharge measurement error was de�ned by η in Section 6.2.1.
The distribution of η is characterized by a single parameter σ 2

η , the calibration of
which was explained in Section 6.2.2.

With little modi�cation, prediction equation Eq. 6.19 can be rewritten to include
discharge measurement error:

p(y+) =
⨌

p(y+ |φ,θ , z+,σ 2
η) · p(φ,θ , z+,σ 2

η) dφdθdz+dσ 2
η , (6.23)

Here, y+ = [yT+V+1,yT+V+2, . . . ,yT+V+W ]T denotes the modelled discharge mea-
surements for the prediction period. The predictions and prediction intervals of y+
can now be compared to the actual discharge observations to assess the quality of
the model. To distinguish between modelled and observed discharge measurements,
in this section we denote the �rst by ym+ and the second by yo+.
Several measures are employed to assess the quality of the model and the e�ect of
the rain gauge density on the discharge prediction intervals. These are the mean er-
ror (ME), the root mean squared error (RMSE), the Nash-Sutcli�e model e�ciency
coe�cient (NSE) and the prediction intervals coverage probability (PICP). The PICP
is the percentage of observations covered by a de�ned prediction interval (Shrestha
and Solomatine, 2008).

ME = 1
W

T+V+W∑
t=T+V+1

(ymt − yot ), (6.24)

where ymt is the arithmetic mean of the simulated discharges at time t .

RMSE =

√√√
1
W

T+V+W∑
t=T+V+1

(ymt − yot )2, (6.25)

NSE = 1 −
∑T+V+W

t=T+V+1(y
m
t − yot )2∑T+V+W

t=T+V+1(yot − y
o)2
, (6.26)

where yo = 1
W

∑T+V+W
t=T+V+1y

o
t .

PICP = 100
W

T+V+W∑
t=T+V+1

It (6.27)
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with
It =

{
1 if ymt (low) ≤ yot ≤ ymt (up)
0 otherwise. (6.28)

where ymt (low) and ymt (up) are the lower and upper limits of the prediction interval
for yt as computed by the model. In the case study, we will compute the PICP both
for the 50% and 90% prediction intervals.

6.2.5 Sampling density scenarios

To investigate the e�ect of rain gauge density on the uncertainty of the discharge
predictions, several scenarios were developed. Each scenario comprises a number of
rain gauges that are optimally selected from the existing rain gauge locations in the
study area. The optimal locations were derived using spatial simulated annealing
(SSA), by minimizing the time-averaged block kriging prediction error variance:

1
T +W

{
T∑
t=1

σ 2
OK (A, t) +

T+V+W∑
t=T+V+1

σ 2
OK (A, t)} (6.29)

where σ 2
OK (A, t) is the rainfall ordinary block-kriging variance at time t and using

the entire study areaA as a “block”. Because there is no obvious analytical means to
compute the block kriging variance of a lognormally distributed variable, the block
kriging variance was approximated by computing the variance of 200 rainfall �elds
simulated using cSGS, in a similar way as described in Section 6.2.2. For more details
about SSA we refer to Van Groenigen and Stein (1998) and Wadoux et al. (2017).

6.3 Data and model

6.3.1 Study area

The study area is the Thur basin (1, 696 km2), located in the North-East of Switzer-
land (Fig. 6.1). The Thur river is a tributary of the Rhine river and is the largest
non-regulated river in Switzerland (Lopez and Seibert, 2016). The elevation within
the basin ranges from 357 to 2437 meters above sea level (m.a.s.l.) with an average
height of 765 m.a.s.l. The Thur basin has been subject of several previous studies
(e.g. Melsen et al., 2016) and data availability is large. Three datasets are used in this
study:

— Daily average temperature data for the period 2004-2011 from the Swiss Fed-
eral O�ce for Meteorology and Climatology (MeteoSwiss). Daily temperature
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Figure 6.1 – Map of the Thur River Basin with locations of rain gauges and discharge

station.

is provided as a spatial grid of about 2300 m × 2300 m resolution based on an
interpolation between meteorological stations (Frei, 2014).

— Daily tipping bucket rain gauge data from MeteoSwiss. Combining manual
and automatic gauges, a total of 29 rain gauges also measuring snowfall are
available for the period 2004-2011. For the purpose of this study, we included
another set of 40 gauges that are within a maximum distance of 20 km from
the basin boundary.

— Daily cumulative discharge data for the period 2004-2011 from the Swiss Fed-
eral O�ce for the Environment (FOEN). The discharge measuring station is
located at the outlet of the basin at Andel�ngen, at an altitude of 356 m.a.s.l.

6.3.2 The HBV model

The HBV model (Lindström et al., 1997) is a conceptual lumped rainfall-runo� model
developed by the Swedish Meteorological and Hydrological Institute. We chose the
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HBV model because of its low input data requirement and because it includes a
snow melt routine. The required input data consist of time series of catchment-
averaged rainfall and air temperature. The model is structured in di�erent routines
such as snow melt, evaporation, soil moisture and groundwater. Channel routing
is described by a triangular hydrograph. For more detailed information about HBV,
we refer to the original publication of Lindström et al. (1997) and to Heistermann
and Kneis (2011) for the speci�c version used in the case study.

6.3.3 Application to the case study

Rainfall-runo� model - We decided to implement a simpli�ed version of the HBV
model from the R package RHydro (Reusser et al., 2017). Time series of rainfall and
temperature were split into calibration (2004-2007) and validation (2008-2011) peri-
ods. The �rst year of the two periods (2004 and 2008) was considered as a warm-up
period and discarded from the results. For practical convenience the daily time series
were aggregated to 10-day averages. This is discussed more extensively in the dis-
cussion. Prior to the Bayesian calibration and uncertainty analysis, a deterministic
calibration was performed. We used a di�erential evolution algorithm to minimize
the mean squared error (MSE) between measured and predicted discharge for the
calibration period. The estimated parameters are shown in Table 6.1 and were used
to help de�ne plausible ranges for the priors of the model parameters.

Rainfall input - We de�ned ten rainfall intensity classes based on the 10-day catch-
ment averaged rainfall amounts and �tted exponential variogram models for each
class. Rainfall intensity increases with class number. Variogram �tting was based
on all rainfall observations that are in the same class, both using rain gauges inside
and outside the basin and using an approach described in Muthusamy et al. (2017).
A plot of the �tted variograms is presented in Fig. 6.2. Periods with an average rain-
fall of less than 0.1 mm were not interpolated and considered as dry. Log rainfall
was simulated 500 times on a 1 km × 1 km resolution grid using the class-speci�c
variogram and were conditioned on the rain gauges inside the catchment only. Pro-
cessing was done using the R package gstat (Gräler et al., 2016). Log rainfall simu-
lations were back-transformed at point locations and spatially averaged (Heuvelink
and Pebesma, 1999).

Eight rain gauge scenarios were considered, comprising 1, 2, 5, 10, 15, 20, 25 and
29 rain gauges, respectively. For each scenario, the rain gauges were selected using
SSA by thinning the existing network. The minimization criterion was the average
block kriging variance computed by discretization of the area into 500 sub-areas.
Implementation was done with the R package spsann (Samuel-Rosa, 2017). The
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Figure 6.2 – Fitted exponential variograms for each of the ten rainfall classes.

initial SSA temperature was set to 0.1 and the cooling factor was set to 0.8. The total
number of SSA iterations was �xed at 10,000. Five out of the eight tested scenarios
are reported in this study.

Bayesian inference - Model parameters and their priors are shown in Table 6.1. Prior
parameter distributions were chosen based on expert knowledge, previous work in
the same basin and optimized parameter values of the deterministic calibration. For
each rain gauge scenario the Bayesian inference was performed. The number of
MCMC iterations was �xed at 106 for Approaches 1 and 2 and to 104 for Approach 3
(6.2.3). The process was repeated several times to ensure convergence of the param-
eter estimates.

6.4 Results

6.4.1 Calibration

Figure 6.3 shows the posterior distribution of the calibrated model parameters for
Approaches 1 and 2, for di�erent rain gauge density scenarios, along with their prior
distribution. For most parameters the posterior distribution is narrower than the
prior distribution. This particularly holds for parameters associated with the routing
routine (maxbas, n, k), the initial state (snow, sm, suz, slz) and the error model (β0,
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Table 6.1 – Model parameters and error model parameters with initial values and
prior distributions. The implementation of the HBV model is based on Heistermann

and Kneis (2011).

Parameter name De�nition Initial value
through de-
terministic
calibration1

Prior distribution of
parameter2

Model parameters
CFMAX degree day factor for snow melt

[mm/°C/d]
2.789 Beta[3, 5, 0, 10]

TT temperature threshold below which
precipitation falls as snow [°C]

0.7787 Beta[3, 2, -3, 3]

FC �eld capacity [mm] 142.4 Beta[1, 4, 0, 200]
MINSM minimum soil moisture for storage

[mm]
2.190 Beta[1, 4, 0, 200]

BETA parameter to control the fraction of
rain and snow melt partitioned for
groundwater recharge [-]

0.5580 Beta[2, 1, 0, 1]

LP fraction of soil moisture-�eld capacity-
ratio above which actual evapotranspi-
ration equals potential evapotranspi-
ration [-]

0.7817 Beta[2, 1, 0, 1]

CET correction factor for potential evapo-
transpiration [-]

0.1153 Beta[4, 4, -10, 20]

KPERC percolation coe�cient [1/d] 2.499 Beta[4, 4, 0, 5]
K0 fast storage coe�cient of soil upper

zone [1/d]
0.4994 Beta[1, 4, 0, 0.5]

UZL threshold above which soil upper zone
storage empties at rate computed by
storage coe�cient K0 [mm]

1.522 Beta[3, 4, 0, 60]

K1 slow storage coe�cient of soil upper
zone [1/d]

0.3883 Beta[1, 4, 0, 0.5]

K2 storage coe�cient of soil lower zone
[1/d]

2.8×10−4 Beta[1, 4, 0, 0.1]

MAXBAS length of (triangular) unit hydrograph
[d]

4.067 Beta[1, 4, 0, 6]

etpmean mean evaporation [mm/d] 2.596 Beta[1, 3, 0, 50]
tmean mean temperature [°C] 7.259 Beta[4, 4, -20, 30]
n (real) number of storages in linear stor-

age cascade
1.997 Beta[1, 2, 0, 7.5]

k decay constant for linear storage cas-
cade

0.4540 Beta[1, 2, 0, 5]

Initial state parameters
snow snow storage [mm] 178 Beta[1 ,3 , 0, 200]
sm soil moisture storage [mm] 369 Beta[1, 3, 0, 200]
suz soil upper zone storage [mm] 117 Beta[1, 3, 0, 200]
slz soil lower zone storage [mm] 44 Beta[1, 3, 0, 200]
Error model parameters
β0 constant in the AR(1) in Eq. 6.2 - U [0,1]
β1 coe�cient for the AR(1) in Eq. 6.2 - U [0,1]
σ 2
δ standard deviation for the AR(1),

Eq. 6.1
- U [0,1]

σ 2
η standard deviation for the measure-

ment error, Eq. 6.1
- U [0,1]

z vector of length T +W for the rainfall
parameters

- Fz, see Eq. 6.7

1 A deterministic calibration is performed prior to the Bayesian calibration. The parameters are optimized with
di�erential evolution. The objective function is the MSE between the predicted and measured discharge.

2 Beta[a,b,c,d] represents a beta distribution in the interval [c,d] with shape parameters a and b. U [a,b] is a
uniform distribution over the interval [a, b].
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β1, σ 2
δ , σ 2

η ). Note that while the posterior distribution of some parameters (e.g. lp,
k perc, k0, k1 and k) is comparable for di�erent rain gauge density scenarios, all
other parameter distributions show (large) di�erences between di�erent rain gauge
density scenarios. The distributions do not seem to be narrower in case of higher
rain gauge density.

Figure 6.4 shows the posterior and prior distribution of the calibrated parameters
for Approach 3, for di�erent rain gauge scenarios. The posterior distributions are
much narrower than the prior distributions, particularly for the parameters of the
snow routine (cfmax, tt, fc), the routing routine (maxbas, n, k), initial state and error
model. For parameters lp, k0 and k1, the posterior distributions are very similar to
the priors. Some posterior distributions are multimodal. In contrast to Fig. 6.3, all
parameters have very similar posterior distributions for di�erent rain gauge densi-
ties.

6.4.2 Prediction

Figure 6.5 shows the rainfall prior and corrected prior (“posterior”) for the prediction
period. Recall that the prior distribution was directly sampled for Approaches 2
and 3 while the rainfall “posterior” distribution was sampled for Approach 1. As
expected, the prediction interval width increases when using a smaller number of
rain gauges. Both rainfall prior and posterior distributions showed very similar
prediction interval widths and mean values. Small di�erences can be observed when
using a small number of rain gauges (i.e. 1 or 2 rain gauges).

Figure 6.6 shows the 90% prediction intervals of the discharge for the three ap-
proaches and including/excluding various uncertainty sources. For the case where
all uncertainty sources are accounted for (plots (a)), there is a clear pattern towards
smaller width of the prediction intervals with an increase of the number of rain
gauges. While there is no clear di�erence in terms of prediction intervals between
the three approaches, Approach 3 provides a larger interval width at a certain time
period (e.g. events at 2009-07 and 2010-08) for the scenario involving 15 rain gauges.
Note that the di�erences between rain gauge scenarios are most pronounced for
high �ows and become negligible for low �ows.

Figures 6.6a do not provide information about the separate e�ect of input,
model parameters and model structural uncertainty on the joint predictive uncer-
tainty. Therefore we also performed an uncertainty propagation analysis that in-
cludes/excludes the various uncertainty sources for the cases where: (b) model
structural uncertainty was ignored; and (c) model structural and model parame-
ter (comprising initial state and error model parameters) uncertainty were ignored.
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Figure 6.3 – Parameters estimated by Bayesian calibration for Approaches 1 and 2.
Black lines represent prior distributions and coloured shapes posterior densities for

di�erent rain gauge density scenarios. Rainfall parameter results not shown.

When model structural uncertainty is ignored (b), the prediction intervals are simi-
lar, except for Approach 3, for which the uncertainty decreases. With the additional
e�ect of model parameter uncertainty removed (c), the prediction intervals become
much narrower, with large di�erences for di�erent rain gauge densities, i.e. the
larger the number of rain gauges, the smaller the prediction interval width. The
latter reduction is particularly visible when increasing the density from 5 to 15 rain
gauges, and becomes marginal when using between 15 to 29 rain gauges. As noted
before, the largest di�erence is obtained for high �ow periods.
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Figure 6.4 – Parameters estimated by Bayesian calibration for Approach 3. Black lines
represent prior distributions and coloured shapes posterior densities for di�erent rain

gauge density scenarios.

6.4.3 Validation

Table 6.2 shows the validation statistics for the three approaches and the �ve tested
rain gauge scenarios. For the three approaches, increasing the number of rain
gauges led to an increase of the predictive power of the model (increase of the NSE).
This increase was generally modest, except for Approach 3. It was accompanied by
a modest decrease of the residual as characterized by the RMSE. The model predic-
tions were practically unbiased (biggest ME deviation from zero equals -0.22), which
shows that the prediction inaccuracy was mainly due to random error, not system-
atic error. There is no clear pattern regarding the PICP with increasing rain gauge
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Figure 6.5 – Rainfall priors for the prediction/validation period. The rainfall posterior
is the corrected prior for Approach 1 for the prediction/validation period. Approaches 2

and 3 sample from the rainfall prior for prediction and validation.

density. For both intervals (50% and 90%), the percentage of observations covered by
the interval was within a reasonable range of variation. Approaches 1 and 2 were
very similar in terms of validation statistics, particularly when a large number of
rain gauges was used. This is according to expectations, as the e�ect of the linear
correction on the prior diminishes with an increasing number of rain gauges.

6.5 Discussion

6.5.1 Consistency of parameter estimates

Our experiments suggest that several model parameters estimated in Approaches 1
and 2 might be weakly identi�ed because of their wide posterior distribution. Gel-
man et al. (2014) stressed that the concept of identi�cation is not so important in
the Bayesian perspective and that one must rather look at how much information
is supplied by the data, i.e that the joint parameter posterior must occupy less space
than the joint prior distribution. In our case, Fig. 6.3 and Fig. 6.4 show that posteriors
were narrower than the priors. This indicates that information was supplied by the
data and explains why the parameter posteriors were actually accurate predictors,
as shown by the NSE value being higher for Approaches 1 and 2 than for Approach 3,
despite the wider posterior distributions of parameters of the third approach.
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Figure 6.6 – Prediction of the discharge using the three approaches for the cases (a) all
sources of error are accounted for, (b) model structural uncertainty is ignored and (c)
model structural uncertainty and model parameter uncertainty (excluding the rainfall

input parameters for Approaches 1 and 2) are ignored.

The posterior of parameter β1 of the AR(1) model suggests that temporal correla-
tion of the model structural error was weak to moderate, which agrees with Huard
and Mailhot (2008). Parameters of the model structural error were well identi�ed.
Realistic assumptions regarding the model structural error model formulation play
a major role to distinguish between model structural and input uncertainty. Since

133



Chapter 6. Optimization of rain gauge sampling density for discharge prediction using Bayesian calibration

Table 6.2 – Validation measures for the three approaches and �ve rain gauge
densities, computed over the period 2009-2011.

Number of rain gauges
1 2 5 15 29

Approach 1
NSE 0.43 0.44 0.47 0.48 0.49
RMSE 1.17 1.16 1.13 1.12 1.10
ME −0.04 −0.06 −0.19 −0.16 −0.08
PICP 50% 60.81 56.76 58.11 59.46 56.76
PICP 90% 90.54 90.54 90.54 91.89 91.89
Approach 2
NSE 0.43 0.43 0.46 0.48 0.49
RMSE 1.17 1.17 1.14 1.12 1.11
ME −0.11 −0.08 −0.22 −0.14 −0.08
PICP 50% 60.81 60.81 57.76 60.81 56.76
PICP 90% 87.84 87.84 91.89 91.89 91.89
Approach 3
NSE 0.19 0.28 0.40 0.37 0.42
RMSE 1.39 1.31 1.20 1.23 1.19
ME 0.18 0.14 −0.07 0.13 0.09
PICP 50% 52.70 56.76 52.70 58.11 55.40
PICP 90% 90.54 93.24 87.84 86.48 91.89

model structural uncertainty is incorporated explicitly it is unlikely that input un-
certainty compensates for de�cits in the model structure (Thyer et al., 2009). We
followed the approach of Beven and Freer (2001) that model structural uncertainty
can be described by a �rst order autoregressive model. We acknowledge that more
complex structures of model residuals can be formulated, such as by using an ARMA
or ARIMA model, but this would be at the expense of increasing parameter space
dimensionality.

Note that Eq. 6.1 can be extended to impose E[eε ] = E[eη] = 1. In this case, the mean
µη of the ηt is no longer zero but must satisfy the identity µη = − 1

2σ
2
η . Similarly, to

ensure E[eε ] = 1, it is not di�cult to show that the identity 2β0
1−β1
+

σ 2
δ

1−β 2
1
= 0 must hold,

implying that one of the three parameters is determined by the other two (e.g. we
could impose β0 = − 1

2
1−β1
1−β 2

1
σ 2
δ ). While we think this would be a preferred approach,

it did not matter much for our case study because the values of the mean structural
error and mean measurement error were in most cases close to 1, and never greater
than 1.6.
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6.5.2 Prediction

In contrast to many studies reported in the literature (e.g. Kavetski et al., 2006),
analysis of the predictive uncertainty shows that in the case study the contribu-
tion of rainfall uncertainty is relatively small and that discharge predictive uncer-
tainty is mainly dominated by model structural and model parameter uncertainty.
As a consequence, the e�ect of the rain gauge density diminishes if model param-
eter and model structural uncertainty is accounted for. Large model parameter
and model structural uncertainty o�sets small input rainfall uncertainty. For Ap-
proach 3, model structural uncertainty is clearly the largest contributor to the total
predictive uncertainty. Several investigations obtained similar results. For example,
Engeland et al. (2005) showed that model structural uncertainty is larger than model
parameter uncertainty for simple conceptual models with few well-de�ned param-
eters. We also con�rm the study of Talamba et al. (2010) for a lumped hydrological
model. Talamba et al. (2010) showed, for a fully distributed hydrological model,
that accounting for input rainfall uncertainty did not lead to a substantial change
in terms of estimated parameters and model performance, because other sources of
uncertainty dominated the total predictive uncertainty. This is similar to our case
study, where in all three approaches the prediction intervals have a similar width
and range. The validation measures show that Approaches 1 and 2, i.e. the case
where rainfall parameters are calibrated, outperform Approach 3.

6.5.3 Di�erences between the three approaches

Comparison of the three approaches revealed that Approach 3 has larger prediction
intervals and poorer model performance, despite the fact that in Approach 3 most
parameters have a well-de�ned unimodal posterior distribution. Note also that the
choice of approach leads to di�erent posterior ranges of parameter estimates. The
smaller number of parameters to calibrate in Approach 3 (i.e. the input rainfall
parameters are not calibrated) suggests that inference bene�ts from the reduced di-
mensionality of the parameter space. The validation results show that this was not
the case when a small number of rain gauges is used (for instance, NSE = 0.29 using
1 rain gauge). Thyer et al. (2009) and Huard and Mailhot (2008) reported similar re-
sults when calibrating time-dependent rainfall input parameters. They showed how
calibrating input rainfall parameters for each time step compensates for the situa-
tion where a rainfall event is not recorded by a small number of rain gauges, and
how this can lead to a near-perfect match between the observed and predicted dis-
charge. In the latter case, Huard and Mailhot (2008) demonstrated that, since model
and input rainfall parameters are estimated jointly, it is likely that the input rainfall
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parameters compensate for structural de�cits of the model. In our case this was
avoided by: (i) explicitly accounting for model structural uncertainty; and (ii) de�n-
ing meaningful priors for the input rainfall parameters using geostatistical analysis.
In addition, Fig. 6.6 shows that model structural error was larger for Approach 3,
while model parameter uncertainty was larger for Approaches 1 and 2.

From a numerical perspective, a major di�erence between Approaches 1 and 2 and
Approach 3 is the number of parameters to calibrate. Hydrologists tend to shy-
away from high-dimensional rainfall input parameter space, because it often leads
to question the statistical signi�cance of the inferred parameters (e.g. Vrugt et al.,
2008). A solution is to resort to MCMC search algorithms, which are e�cient to ex-
plore the multi-dimensional and correlated parameter space. This has been recently
tackled in the hydrological literature (e.g. Laloy and Vrugt, 2012) and in the more
general statistical literature (e.g. Ter Braak, 2006). Another solution is to reduce the
dimension of the parameter space. Alternative methods to Approach 1 (i.e. the case
where each time step is an input rainfall parameter to calibrate) exist. For example,
Kavetski et al. (2006) use storm-event multipliers under the assumption of perfect
dependence of input errors within single storm events. By letting these multipli-
ers vary according to the plausible range of hydrological variation, they correct for
systematic error in the rainfall input. The major limitation is the need to de�ne
hydrological ranges in which the calibrated multiplier is kept constant.

6.5.4 Implications for rain gauge density

The impact of the rain gauge density on parameter posterior distributions was mod-
est. Parameter posteriors for Approaches 1 and 2 show that there was typically little
di�erence between the rain gauge scenarios, while there was almost no di�erence in
the case of Approach 3. This suggests that parameter estimation was robust to the
density of the rain gauges. This is an important �nding, as the necessary condition
for the regionalization of a rainfall-runo� model is that the parameters are insensi-
tive to the choice of the number and locations of rain gauges (Thyer et al., 2009). We
acknowledge that these results may be di�erent in di�erent circumstances, such as
in a case where rainfall uncertainty has a larger impact on the parameter posterior
distributions. This study, however, contradicts the �ndings of Zeng et al. (2018), who
found that parameter posterior distributions vary considerably under di�erent rain
gauge densities. However, Zeng et al. (2018) did not propagate rainfall input uncer-
tainty and simply sampled a large number of possible rain gauge combination for
a given density and analysed the di�erences between rain gauge densities in terms
of the model parameter posterior distribution. Thus, they ignored a substantial pro-
portion of the uncertainty, which potentially caused model parameter uncertainty
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to compensate for the unaccounted rainfall uncertainty (Kavetski et al., 2006).

In our experiment, low rain gauge densities already produced accurate model pre-
dictions. This particularly applied to Approaches 1 and 2 where only one gauge
led to a NSE of 0.43. This threshold is low compared to other studies. Dong et al.
(2005) reported that �ve rain gauges were enough to calibrate the HBV model in
a 17,000 km2 basin in China, using the expected variance of the areal rainfall as
a measure of input uncertainty. In a 3234 km2 catchment in France, Anctil et al.
(2006) concluded that ten rain gauges (out of 23) is an absolute minimum to predict
discharge using a neural network model. However, the authors did not model the
rainfall spatial variation explicitly. Bárdossy and Das (2008) found that the overall
model performance worsened radically with an excessive reduction of rain gauges in
the upper Neckar catchment of about 4000 km2. They optimized the rain gauge loca-
tions for di�erent rain gauge densities using simulated annealing and kriging with
external drift. They showed a signi�cant reduction of the rainfall input variance
with increasing density, which paired with a decrease of the discharge prediction
error. However, the cited studies did not use Bayesian calibration. In a Bayesian
framework, Zeng et al. (2018) found that 10-15 rain gauges were necessary to ob-
tain stable parameter estimates for medium-size sub-basins, but the authors did not
propagate input rainfall uncertainty. In our study, the input rainfall uncertainty is
estimated using geostatistics and propagated in a Bayesian framework. A fairly ac-
curate estimate of the catchment average 10-day rainfall was obtained using just
one or two rain gauges, which explains why a surprisingly small number of rain
gauges was enough to calibrate the hydrological model. The rainfall posterior pa-
rameters adjust for the missing information using the discharge data. In Approach 3,
i.e. when the rainfall is not updated by the discharge data, the model performance
was worse than the other approaches in all cases, and particularly for cases with a
small number of rain gauges (fewer than 5 rain gauges).

Although using a very small number of rain gauges led to accurate model prediction,
using more rain gauges did improve the model predictions. The results of our case
study showed that a density larger than �ve rain gauges led to a marginal improve-
ment of the prediction accuracy. This is equivalent to 1 rain gauge per 340 km2. It
should be noted that this result cannot easily be generalized because it is likely case-
dependent. In particular, the surprisingly low rain gauge density is likely related to
the 10-day time step that we used in the case study. Aggregating rainfall over 10-day
periods automatically leads to a decrease of the rainfall spatial variation. Figure 6.2
shows that the spatial variation of the 10-day average rainfall in the Thur basin
is relatively small: the variogram sill was small and the variogram range was large.
We emphasize that predicting 10-day average discharge also leads to smoothing and
hence will miss peak discharges. For certain applications a smaller time step will be
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required, although the time step that we used is suitable for many applications, e.g.
for total discharge prediction over long time periods.

6.6 Conclusion

We calibrated the HBV rainfall-runo� model accounting for input, parameter, initial
state and model structural uncertainty using a Bayesian framework for a 1700 km2

basin in Switzerland. Prior input rainfall distributions were derived using a geo-
statistical approach. We tested several scenarios for incorporating the input un-
certainty and assessed the e�ect of rain gauge density on calibration. The main
conclusions are:

— Assumptions regarding the formulation of the model structural uncertainty
play a major role in distinguishing between model structural and input un-
certainty. Since model structural uncertainty is incorporated explicitly it is
unlikely that input uncertainty compensates for de�cits in the model struc-
ture.

— In our case study, input uncertainty was small compared to model structural
and parameter uncertainty.

— Calibrating the rainfall parameters (Approach 1) led to more accurate model
performance compared to the case where rainfall uncertainty was not up-
dated using discharge data (Approach 2). The increased dimensionality of
the parameter space when calibrating rainfall did not lead to computational
intractability.

— Parameter estimates were robust to rain gauge density. This is important, as
this enables regionalization of the rainfall-runo� model.

— In our case study, using a single rain gauge did not seriously deteriorate dis-
charge prediction.

— Adding up to �ve rain gauges improved the model prediction. Adding even
more only produced a marginal improvement of the prediction accuracy. For
our study area, �ve rain gauges is equivalent to one rain gauge per 340 km2.
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7.1 Introduction

In Chapter 1, I argued that there is a discrepancy between research on spatial sam-
pling design optimization and latest developments in geostatistical modelling and
mapping. I gave four examples of recent mapping techniques for which little in-
vestigation has been dedicated to derive optimal sampling strategies. The sampling
design is important, because the map accuracy is partly determined by the number
and spatial locations of the units used to calibrate a model for spatial prediction and
for the spatial prediction itself. Sampling is also a costly a�air. A design can po-
tentially help to save costs if done optimally. In this thesis I made a step towards
derivation of optimal designs for novel mapping techniques with case studies on
mapping soil and hydrological variables.

In this �nal Chapter I discuss whether the objectives of this thesis were achieved
(Section 7.2). I will also compare the �ndings of this thesis with existing literature
and suggest directions for future research (Section 7.3). Finally, in Section 7.4, I
will place this thesis within a more general historical context, provide a personal
re�ection and give the main conclusion.

7.2 Overview of �ndings

The overall aim of this thesis was to extend our knowledge on sampling design
optimization for recent advances in spatial modelling and prediction. The objective
was addressed through four research questions stated in Section 1.3.5, of which the
results were presented in Chapters 2 to 6.

Chapter 3 dealt with sampling design optimization using the geostatistical model
de�ned in Chapter 2. For a case study optimizing the locations of rain gauges for
mapping rainfall in the North of England, it was shown that spatial prediction ben-
e�ted from a geostatistical model that includes non-stationarity in the mean and
variance, as shown by the likelihood and Akaike Information Criterion statistics.
The optimization of the rain gauge network was achieved by spatial simulated an-
nealing. The optimized rain gauge network improved slightly the rainfall mapping
accuracy. The accuracy gain was limited because I used a static design (Brus, 2014)
for all time steps, while the areas with large prediction uncertainty vary from day
to day. The optimized design also showed a speci�c spatial pattern. It had a fairly
uniform spatial distribution but an increased density in areas where the residual
variance was generally large. In our case study these areas where in high elevation
areas and areas far from the rainfall radar stations. I further tested an optimized
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design using a reduction of 10% of the total number of rain gauges. The optimized
design showed a signi�cant improvement over the original design using all rain
gauges. I concluded that at least 10% of the rain gauges could be removed (e.g. to
save costs) without loss of mapping accuracy, provided that the rain gauges are
placed optimally in the area of interest.

Chapter 4 showed that a spatial coverage design performs poorly for mapping us-
ing ordinary kriging because such design lacks information about spatial variation
at short distances, which is needed to estimate the variogram parameters. This was
tested for a series of variogram parameters of a Matèrn correlation function. An op-
timized design performed always slightly better, but has several disadvantages. For
example, it requires the variogram parameters to be known to de�ne an objective
function characterizing the total error, and minimizing this error using optimization
algorithms (e.g. Spatial Simulated Annealing). In contrast, a spatial coverage design
supplemented by a subset of close-pair units o�ered accurate results for most com-
binations of variogram parameters tested. I therefore recommend to use the latter
design for designing a geostatistical survey, unless prior knowledge of the variogram
is available (e.g. an “average” variogram). If an average variogram is available for the
property of interest, it can be used to optimize the design. I further tested the mini-
mum number of sampling units required to make a geostatistical survey worthwhile
(i.e. more accurate than a design-based estimate of the mean), and showed that this
strongly depends on the degree of spatial correlation of the target variable. I showed
that for large values of the variogram e�ective range and small nugget-to-sill ratios,
a sample size of about 20 units is su�cient to make geostatistical analysis more ac-
curate than a design-based estimate. Note that in the latter case, the design-based
estimate of the mean was used as the predicted value at any point in the area.

The case study of Chapter 5 demonstrated, for mapping topsoil organic carbon using
a machine learning methods (viz. random forest), that an optimized design was up
to 10% more accurate in term of MSE than other common sampling designs, but
can only be obtained when subsampling an existing dataset with known values of
the target variable at all locations. In practice we do not have this information.
By comparing the mean square error (MSE) of the maps obtained by an optimized
design with those obtained by common designs, it was shown that optimizing a
design in terms of MSE is not always worthwhile. When the sample size increases,
the maps produced by the di�erent designs converge to similar accuracy values.
In our case study on large scale soil organic carbon mapping, a sampling density
greater than 1 sampling unit per 4000 km2 decreased markedly the di�erence in
term of average MSE between designs. A design optimized for the mean squared
shortest standardized distance in the feature space presented the closest match with
the optimized design in terms of MSE. By analysing the distribution of the sampling
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locations in both geographic and feature space, I further showed that the optimized
design is not spread in the geographic space, but seems to be spread somewhat
uniformly in the feature space, and especially in the most important covariates of
the machine learning model. It is however di�cult to draw further conclusions
because of the complex spread of the units in feature space. Further research is
needed in this direction.

In Chapter 6 I integrated geostatistics and Bayesian calibration to analyse the e�ect
of the rain gauge density on rainfall-runo� model prediction accuracy, which uses
interpolated maps of rainfall as input. The Bayesian calibration enabled to capture
model input, initial state, parameter and structural uncertainty, while also taking
uncertainties in the output measurements into account. In a case study predicting
river discharge using a rainfall-runo� model and maps of rainfall as input, a single
rain gauge was su�cient to obtain accurate model parameter calibration and dis-
charge predictions. Adding up to �ve rain gauges improved the model prediction.
Adding even more only produced a marginal improvement of the prediction accu-
racy. Calibrating the rainfall time series as additional parameters led to more accu-
rate model performance compared to the case where rainfall uncertainty was not
updated using measurements of the discharge. Furthermore, it was demonstrated
for a case study that model parameter uncertainty was the main contributor to the
posterior discharge uncertainty and that input uncertainty had a relatively small
contribution. However, the study also showed that Bayesian calibration of rainfall
has serious computational disadvantages. In particular, calibrating a large number
of rainfall input parameters remains a serious challenge.

7.3 Future research

This thesis has shown the possibility to optimize designs of recent mapping tech-
niques.

Chapter 2 showed a substantial improvement of the non-stationary variance model
over the stationary variance model. The non-stationary variance model of Chap-
ter 2 is also an improvement of the model detailed in Lark (2009) since the latter
study was limited to the use of the spatial coordinates as explanatory variable for
the variance. The strongest point of the non-stationary variance model developed
in Chapter 2 is the explicit modelling of the variance by environmental covariates.
However, the variance was modelled as a linear combination of covariates (Chap-
ters 2 and 3) which may pose some restrictions. The variance of soil and hydrological
variables have often complex, non-linear relationships with environmental covari-
ates. The regression used in Chapters 2 and 3 could surely be improved by increasing
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the number of covariates and modelling non-linear processes, as in the random for-
est model (Hengl et al., 2018). The geostatistics community has not yet explored
mapping based on non-linear regression of the variance. This might be a valuable
extension of Chapters 2 and 3 of this thesis. However, a more complex variance com-
ponent may con�ict with the rigid need to avoid near-singularity when inverting
the covariance matrix. Several solutions exist to avoid the near-singularity problem
and some have been tested in this thesis. In the simplest case, one may constrain the
estimation of the standard deviation parameters so that their combination does not
provoke near-singularity of the covariance matrix (Marchant et al., 2009), as eval-
uated by a criterion, e.g. reciprocal condition number (Golub and Van Loan, 2012).
Other solutions that have been mentioned in this thesis are the use of the generalized
inverse (Sen and Srivastava, 2012) or the modelling of a log-transformed standard
deviation (e.g. as in Pintore and Holmes, 2004). This might solve the problem in
some cases but it requires further investigations.

The case study of Chapter 3, mapping rainfall using radar maps as covariates in
the spatial trend, showed an example on how the units of the optimized design are
dispersed in areas of large radar uncertainty. This can be applied in other �elds
too, where the use of remote or proximal sensing technologies is becoming increas-
ingly important. For example, soil moisture spatial variability is partly governed by
land cover, whose maps are easy to obtain using remote sensing images. It is likely
that soil moisture mapping bene�ts from a model that accounts for deviations from
restrictive stationarity and isotropy assumptions. A recent contribution made by
Kathuria et al. (2019) shows that this is indeed the case. In this study a land cover
map was derived by remote sensing images and used as a covariate in a geostatistical
model whose variance and correlation structures are �exible. The improved maps
of soil moisture can be used to optimize the locations of ground-based measure-
ments, which in turn are crucial information for calibrating and validating satellite
soil moisture retrieval (Reichle et al., 2004).

This thesis has shown the added value of close-pair locations supplementing a spa-
tial coverage when designing a geostatistical survey, and compared this design to an
optimized design. The close-pairs were chosen randomly at a �xed short distance
from an existing sampling location. We could further test whether this distance re-
lates to the size of the test area and to the variable of interest. We used an arbitrary
distance, only imposing that it is short relative to the extent of the study area. This
subjective decision is rather common, e.g. Atteia et al. (1994); Cattle et al. (2002).
as no speci�c study presents rules to choose this distance, but this clearly requires
further investigation so as to generate rules and guidance for designing e�cient geo-
statistical surveys. Chapter 4 builds on the study made by Lark and Marchant (2018)
who showed that it is best to supplement the spatial coverage design with 10% of
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additional sampling locations to provide some closely spaced pairs. Using a propor-
tion of the total sample size as close-pairs seems to work well on small sample sizes
(tested for fewer than 150 sampling units), but has not been tested for larger sample
size. This is perhaps not optimal to �x the percentage of close-pair units and we
may rather want to �nd an optimal �xed number instead. The analysis of Lark and
Marchant (2018) could be repeated for larger sample size, by testing the threshold in
which an absolute number of close-pairs unit does not provide improvement on the
prediction error variance. However, when taking a too small number of close-pairs,
there is a risk that the close-pairs are located in a-typical conditions, given that we
assume second-order stationarity. A large number of close-pairs ensure that this is
avoided, for little additional e�ort in �eld collection.

There is also room for further research to support sampling for kriging with ex-
ternal drift, in presence of variogram uncertainty. Estimating additional (linear)
regression coe�cients introduces additional considerations for sampling design. In
a linear model, estimation of the coe�cients bene�t from a sample that is clustered
around few areas, corresponding to the extremes of the covariates. We can spec-
ulate that a spatial coverage design supplemented by some close-pairs locations is
also e�cient, albeit necessarily sub-optimal, to support estimation of the additional
trend parameters. The spatial coverage sample would ensure reliable estimation of
the trend parameters (Brus, 2019) and the close-pairs would ensure estimation of
the covariance parameters (Chapter 4).

Sampling optimization for mapping using machine learning techniques has been
barely investigated by previous research. In Chapter 5 I tested several sampling
strategies for mapping using random forest (RF). RF currently is certainly the most
popular machine learning algorithm, which use for soil mapping has been recently
formalized by the publication of Hengl et al. (2018). But RF is not the only machine
learning technique available for mapping. Support vector machines (Ballabio, 2009),
(arti�cial) neural networks (Behrens et al., 2005; Were et al., 2015), decision trees
(Moore et al., 1991) and gradient boosting (Nussbaum et al., 2017) are all linking
the variable of interest and the environmental covariates in a non-linear way. In
Chapter 5 I assumed that an optimal design for RF would similarly be optimal for
other tree-based models. This is a realistic assumption given that RF and other tree
based methods share the same basic structure and splitting metrics. Sampling for
other machine learning techniques still needs to be explored in further research.
I would speculate that the spread of the sampling units in feature space remains
important, but that other considerations (e.g. selecting support vectors for mapping
with support vector machine) may outweight the uniform spread.

During the course of this thesis, new machine learning techniques, called deep
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learning (Behrens et al., 2018a), emerged as a valuable tool for spatial analysis
(Wadoux et al., 2019b; Padarian et al., 2019). In particular, convolutional neural net-
works o�er attractive features such as contextual mapping and �exibility in modify-
ing the objective function (Wadoux, 2019). Deep learning models are “data-hungry”
algorithms. Their use for mapping with scarce data and their optimal sampling re-
quire investigation. We are now aware that random forest techniques bene�t from
a spread of the units in the feature rather than in the geographic space. But the
spread in the feature space is complex and not simply uniform on the whole set of
covariates. One of the reason of this complexity is that the feature space is multi-
dimensional. We are still unsure what makes a good sampling design for mapping
using machine learning techniques. To discover it, we must �rst reveal the charac-
teristics of an optimized design, such as the one derived in Chapter 5, so that future
research can generate rules and obtain simple designs able to resemble optimal ones.
I believe this will be a major research topic for sampling design in the forthcoming
years.

Sampling design optimization becomes more complex when it is used to derive a
map used as input for a model whose output is the main interest. This was done
by integrating geostatistics for mapping rainfall and Bayesian calibration of a hy-
drological model for predicting river discharge (Chapter 6). The work presented in
Chapter 6 di�ers in some ways from Renard et al. (2011). The main di�erence is the
use of geostatistics to de�ne a prior distribution for the rainfall, the latter being used
for the integration of the rainfall of each time step as an additional parameter to be
calibrated. This was not the case in Renard et al. (2011), which used geostatistics to
model the uncertainty of the rainfall maps, and propagated these to the discharge
output using Bayesian calibration. In Chapter 6 I optimized the rain gauge locations
using a criterion related to the rainfall map accuracy, which is used as input in the
hydrological model. There is room for further research to optimize the rain gauge
locations for a criterion that minimizes directly the hydrological model prediction
error Anctil et al. (e.g. as in 2006). This has not yet been investigated in the litera-
ture using Bayesian calibration, but will inevitably cause an important increase of
the computational load because for each rain gauge network con�guration tested,
several thousands of Markov Chain Monte Carlo runs have to be computed.

A major limitation of Chapter 6 is the number of parameter to calibrate in Ap-
proach 1, when the rainfall is updated by the discharge measurements. Further
investigations may show whether it is more e�cient to reduce the number of pa-
rameters (e.g. using storm event multipliers Kavetski et al., 2006; Vrugt et al., 2008)
or to rather �nd strategies to explore the multi-dimensional and correlated param-
eter space. In our case study this was not a problem, but Approach 1 will become
cumbersome to model hydrological processes at �ne temporal resolution (such as
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daily or �ner) or for long time periods (several decades). Finally, I emphasize that in
our case study, one single rain gauge was su�cient to obtain reliable prediction of
the discharge. This is because rainfall variability was small for the 10-day aggrega-
tion period, and that in consequence rainfall uncertainty was modest compared to
parameter and model structural uncertainty. This contradicts clearly several previ-
ous studies on rainfall input uncertainty in hydrological modelling using Bayesian
calibration (e.g. Kavetski et al., 2006; Thyer et al., 2009; Zeng et al., 2018). These
studies showed that rainfall input was the main contributor to the joint posterior
uncertainty. There is need to bring the study of Chapter 6 one step further and test it
on a large number of catchments so as to gain insight into the importance of rainfall
uncertainty for di�erent case studies. Recent studies (e.g. Melsen et al., 2018) have
made a step forward towards generalization of hydrological modelling to a large
number of catchments so as to explore a range of possible scenarios.

7.4 Re�ection on sampling design optimization
practices

Historical perspectives

Research on sampling design optimization for mapping began in the 1980’s and
1990’s with numerous studies showing the importance of the distribution of sam-
pling locations in geographic space when designing geostatistical surveys. McBrat-
ney et al. (1981) showed that an equilateral, triangular grid provides the minimum
estimation variance for an isotropic variogram and ordinary kriging prediction at
point locations, and that using a square sampling grid presented a small loss of pre-
cision but is more convenient to use. Incorporating a drift into the kriging equations,
Olea (1984) tested various sampling strategies for geostatistical modelling of the wa-
ter table using a known isotropic variogram. This study recommended the use of a
regular hexagonal pattern, or alternatively a regular square pattern. Back then, the
authors warned against the use of random sampling strategies, which need several
times more sampling units than a hexagonal pattern to achieve the same mapping
accuracy. Yfantis et al. (1987) promoted the use of an equilateral triangle design,
which he proved useful for estimating the variogram and mapping. The studies
cited, and others (Villeneuve et al., 1979; Hughes and Lettenmaier, 1981; Flatman
and Yfantis, 1984; Odeh et al., 1990), stressed the importance of a uniform spread of
the sampling units in the geographic space for mapping using ordinary kriging.

This was further investigated in the 1990’s by the work of Van Groenigen et al.
(1999), who used simulated annealing, extended for spatial optimization purposes,
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to optimize sampling designs for mapping using ordinary kriging. The optimized de-
signs using the mean or maximum of the kriging variance as minimization criterion
outperformed triangular grid sampling strategies. The authors also showed that the
optimized sample has a fairly uniform geographic distribution, with sampling units
slightly pushed towards the boundary of the study area. Another contribution was
made by Brus et al. (2007), who showed that the mean kriging variance of a spatial
coverage sample, obtained by minimizing the mean of the squared shortest distance
(MSSD) by the fast k-means algorithm as proposed by Brus et al. (1999), was about
equal to the mean kriging variance directly minimized by SSA.

We are now aware that more aspects need to be accounted for when optimizing a
survey. Most studies in the 1980’s and 1990’s investigated the ordinary kriging case,
with few exceptions (e.g. Yfantis and Flatman, 1988). With time, models became
more complex and mapping techniques became more evolved. We are now making
increased use of environmental covariates as auxiliary information to our models
and we use machine learning techniques. The complexity increased and so have the
sampling strategies for modelling and mapping.

The new millennium: more complex models

A change has been made from 2000 onward, where studies analysed the e�ect of in-
cluding a trend into the kriging variance minimization. Hengl et al. (2003) showed
that a design optimal to estimate the regression coe�cient of a linear model is spa-
tially clustered. Lesch et al. (1995) showed how the calibration of a linear model
can lead to strong spatial clustering of the units as it assumes independent residu-
als. The authors proposed a sampling design (response surface sampling) to avoid
spatial clustering and account for possible violations of the residual independence
assumption. Later, Brus and Heuvelink (2007) investigated on optimal design for
geostatistical mapping using kriging with a linear trend. The study showed the im-
portance of simultaneous optimization of the sample in both geographic and feature
space. Additional contributions have accounted for the estimated variogram uncer-
tainty into the sampling design. Lark (2002) and Zhu and Stein (2005) proposed a
criterion to model the covariance structure uncertainty, which can be minimized
using a spatial optimization algorithm (Van Groenigen et al., 1999). These studies
re�ect the constant need for adaptations of the input sampling design when models
change. In particular, there is an important research e�ort towards the improve-
ment for modelling the stochastic residuals and the use of non-linear, data-driven
machine learning techniques for mapping. For example, Pozdnoukhov and Kanevski
(2006) and later Tuia et al. (2013) optimized a network for mapping using support
vector machine. They speci�cally aimed at minimizing the “risk” of selecting new
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sampling units that do not have a valuable contribution to the model (by becoming
support vectors). To the best of my knowledge, they were the �rst to investigate on
sampling designs for mapping with a machine learning technique.

Deriving an optimized design becomes even more complex when the map is not the
main goal, but simply one of the inputs of a model whose output is the main inter-
est. This is a frequent exercise in studies in hydrology, soil science, climatology, land
surface and reservoir modelling (Mishra and Coulibaly, 2009). Sampling for an input
that is used as input in a model has been tackled in the hydrology literature in vari-
ous forms. Back in the 80’s, Troutman (1983) and Krajewski et al. (1991) have shown
that the spatial variability of rainfall, and therefore the sampling design, severely af-
fects the storm runo� prediction accuracy. Troutman (1983) used the Green-Ampt
soil-water in�ltration model and tested the e�ect of the rainfall-induced bias on
the estimation of physical parameters. This has been taken one step further in the
last two decades. St-Hilaire et al. (2003) compared two network density scenarios:
one dense and another sparse. The network was used to derive daily average rain-
fall maps, which were used as input into the HSAMI model to simulate runo�. The
study showed the importance of a dense network to capture peak �ows and summer
�ood events. Later, Dong et al. (2005) investigated on optimal number of rain gauges
on hydrological model prediction using the HBV model. They showed that the dis-
charge prediction accuracy increases hyperbolically by adding more rain gauges,
but levels o� after only �ve rain gauges. This is further explored by Anctil et al.
(2006) who also analysed the e�ect of the sampling locations on runo� forecasting.
A genetic algorithm was used to optimize the rain gauge sampling con�guration so
as to improve the forecasting performance. This study showed that if placed opti-
mally, using fewer rain gauges can lead to better forecast than when all available
rain gauges are used. Note that research on sampling design for producing maps
which are used as input to a model is a common problem which has also been tack-
led in other �elds, such as in climatology. Examples of such studies are found in
PaiMazumder and Mölders (2009), Mauger et al. (2013) or Yang et al. (2014).

Is there a single best optimal design?

It was shown that, for a wide range of models and mapping scenarios, using an
optimized design always makes a signi�cant di�erence in terms of mapping accu-
racy. On the basis of the literature and the various cases treated in this thesis, I can
however not conclude that there is a single best optimal design. It is very much case
dependent. It depends, among others, on: (i) the assumed model of spatial variation,
and therefore the mapping technique because the mapping method depends on the
model; (ii) the assumption whether we need or need not estimate the model param-
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eters from the data. For instance, this is the case for the variogram parameters, if we
assume these known then we do not need close-pairs units. In the same way, if lin-
ear regression model coe�cients are known then there is no need to take the feature
space into account; (iii) the criterion that is used to optimize the sampling con�gura-
tion. The most common and perhaps simplest criterion to minimize is the spatially
averaged or maximum prediction error variance, but I also discussed in Chapter 4
and 6 that other criteria may be used, such as variogram parameter uncertainty or
in a more complex case the prediction error variance based on a model taking as
input maps for which the sample is optimized. Recall from the Introduction that in
practice, we may also include some additional constraints in the optimization, such
as the cost of sampling and accessibility. This may all have an impact on the optimal
design. Being conscious that there is no single best optimal design implies that for
each case study, investigations must be made given the model, the assumptions and
the objectives. The methods developed in this thesis and the literature provide use-
ful information to derive an appropriate design for a given case study. Being aware
that there is no single best optimal design also means that it is di�cult to tell at the
beginning of a project which sampling design one must adopt. This is yet a frequent
problem.

Which sampling strategy to adopt at a start of a project?

Chapters 3 to 6 and the literature have shown that optimizing the sampling design
is always preferable because it leads to smaller prediction variance (Chapter 3 and
4), prediction error (Chapter 5) or model output variance (Chapter 6). We know
that to apply an optimization we must satisfy the three conditions detailed in the
previous paragraph, i.e. (i) we know the model of spatial variation, (ii) we know
which parameters to estimate and (iii) we know which criterion to optimize. The
choice of the criterion is major and it has a serious e�ect on the optimal design. In
practice we may not know the three conditions. This is typically the case at the start
of a project when no previous data or expertise are available but we need to design
a survey. In is case, it is sensible to use some rules of thumb to design a survey for
mapping. I provide some below, based on this PhD-research.

At the higher level, one may wish to decide to use either a design-based or a model-
based approach for sampling. A design-based approach is appropriate to estimate
global or local quantities (e.g. global or local mean and variance) such as the re-
gional mean or mean values within subregions (Brus and De Gruijter, 1997). In this
thesis I was interested in mapping and so I did not analyse design-based sampling
strategies. Brus and De Gruijter (1997) and Webster and Lark (2012) showed how
the design-based mean (for a region, or subregion) may be treated as a spatial pre-
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diction. While it is acknowledged that the design-based approach is appropriate for
estimating quantities, there is still debate on the relevance to estimate the value of
a speci�c location using the regional mean or mean value within subregions, and
on how to estimate accuracy measures at point. See for example the discussion in
Laslett (1997). For mapping, I mentioned in the Introduction that a model-based
sampling strategy is preferable. A simple random sampling provides pairs of units
at many separation distances, this is favorable for a variogram estimation, but in-
evitably sub-optimal because a criterion related to the variogram parameter un-
certainty is not minimized. For mapping using an (unknown) geostatistical model,
a robust strategy is to use a spatial coverage sampling design supplemented by a
sample of 10% of the total sample size at short distance from the existing locations
(Chapter 4). Alternatively, databases of variogram parameters will help in deriving
an average variogram which can be used to optimize a design of a given size. These
simple rules apply for mapping using a geostatistical model. Close-pairs units are
useful for estimating the variogram parameters while a regular pattern is appropri-
ate for spatial interpolation. Using covariates and multiple linear regression, a rule
of thumb is that the sample size must be 20 times larger than the number of co-
variates (Franklin, 2010), and that the units should be clustered at the minimum and
maximum of the covariate values. For other mapping techniques, such as machine
learning, it is still di�cult to provide guidance on sampling without a reconnais-
sance survey. A robust recommendation is to avoid conditioned Latin Hypercube
sampling (Chapter 5) and to use a feature space coverage sampling design instead.

Conclusion

All the aspects of sampling designs mentioned in this thesis cannot be analysed in
separation. The previous sections showed that including covariates, using machine
learning, including a non-stationary variance, need for estimation of variogram pa-
rameters, all in�uence what makes an optimal sampling design. I believe that this
thesis made a substantial contribution to adjusting spatial sampling design opti-
mization to recent spatial modelling developments, but I also believe that we are
just at the beginning of this speci�c �eld of science. There is a large increase in
complexity of techniques and models used for mapping. We make more use of spa-
tially explicit information, such as remote sensing imagery, and measurements are
increasingly inferred rather than measured. In the last decade, techniques for map-
ping became more data-driven and non-linear, increasing de facto the complexity of
the sampling designs that should accompany such developments. In fact, common
spatial sampling designs seem outdated for such techniques (Chapter 5). While the
characteristics of sampling designs for data-driven techniques (e.g. machine learn-
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ing) are not yet fully discovered, new mapping techniques such as deep learning
appeared. Such techniques are known to be “data-hungry”, which con�icts with the
generally small number of sampling units available for mapping. We must make an
e�cient use of the available data. New data collection approaches must be justi-
�ed, in particular to funding bodies. Thus, research on spatial sampling design and
optimizing the sampling density is highly relevant in the modern spatial modelling
world. It must not be considered as an end in itself but as a tool to help obtaining
knowledge about the new mapping techniques and use them optimally. Because
sampling is the basis of mapping and has a large impact on cost and accuracy, this
research �eld will remain as important as ever in geostatistics and spatial modelling.
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Summary

Space-time monitoring and prediction of environmental variables requires measure-
ments of the environment. But environmental variables cannot be measured every-
where and all the time. Scientists can only collect a fragment, a sample of the prop-
erty of interest in space and time, with the objective of using this sample to infer
the property at unvisited locations and times. Sampling might be a costly and time
consuming a�air. Consequently, we need e�cient strategies to select an optimal
design for mapping.

Most studies on sampling design optimization consider the case of predictive map-
ping using geostatistics. In recent years geostatistical models and associated map-
ping techniques have advanced, which calls for adaptation of associated sampling
designs. The main objective of this thesis is to address the optimal design of four
recent advances in mapping.

Chapter 3 explores sampling design optimization for the non-stationary variance
geostatistical model de�ned in Chapter 2. Accounting for non-stationarity in the
variance of environmental properties in complex landscapes leads to better quan-
ti�cation of the mapping uncertainty. This is applied in a case study mapping daily
rainfall in the north of England, and optimizing the rain-gauges for mapping. It is
shown that rainfall prediction bene�ts from a model that includes non-stationarity
in the mean and variance, as shown by the likelihood and Akaike Information Cri-
terion statistics. The optimization of the rain gauge network is achieved by spatial
simulated annealing. The optimized rain gauge network improves slightly the rain-
fall mapping accuracy. The accuracy gain is limited because I used a static design for
all time steps, while the areas with larger prediction uncertainty vary day-by-day.
The optimized design also shows a speci�c spatial pattern, with a fairly uniform
spatial distribution but an increased density in areas where the residual variance is
large. I further test an optimized design using a reduction of 10% of the total num-
ber of rain-gauges. The optimized design shows a signi�cant improvement over the
original design using all rain-gauges. I conclude that 10% of the rain-gauges may
be removed (e.g. to save costs) without loss of mapping accuracy, provided that the
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rain-gauges are placed optimally.

Chapter 4 investigates the use of simple sampling strategies to account for a cri-
terion that encompasses both prediction error variance and variogram parameter
uncertainty in geostatistical mapping of soil properties. I test two sampling de-
signs: spatial coverage and spatial coverage supplemented by a subset of close-pairs
units, and compare these to a design optimized for this criterion. I show that a spa-
tial coverage design performs poorly for mapping using ordinary kriging because
of the lack of information at short distances to estimate the variogram parameters.
This is valid for series of estimated variogram parameters of a Matèrn function. An
optimized design performs always slightly better, but has several disadvantages. For
example, it requires the variogram parameters to be known. It also involves de�n-
ing an objective function characterizing the total error, and minimizing this error
using optimization algorithms. In contrast, a spatial coverage design supplemented
by a subset of close-pair units o�ers accurate results for most variograms tested. I
therefore recommend to use the latter design for designing a geostatistical survey,
unless prior knowledge of the variogram is available (e.g. an average variogram).
If an average variogram is available for the property of interest, it can be used to
optimize the design. I further test the minimum number of units required to esti-
mate the variogram of a geostatistical survey, and show that it strongly depends on
the degree of spatial correlation of the target variable. For large values of the vari-
ogram e�ective range and small nugget to sill ratios, it is shown that only 15 units
are enough to make geostatistical analysis worthwhile, i.e. more accurate than a
design-based estimate.

Mapping is not always performed using geostatistical methods. There is growing in-
terest towards mapping using data-driven, non-linear machine learning techniques.
The objective of Chapter 5 is to extend our knowledge on sampling optimization
for mapping using random forest, and to compare it to conventional sampling de-
signs. I tested the methodology in a potential application scenarios, mapping topsoil
organic carbon at European scale using measurements of the LUCAS dataset as pop-
ulation of interest. I demonstrate that an optimized design is always more accurate
than other common designs, but possible to obtain only when subsampling an ex-
isting dataset with known values of the soil property at all locations. By comparing
the mean square error (MSE) of the maps obtained by an optimized design with the
those obtained by common designs, it is shown that optimizing a design in terms of
MSE is not always worthwhile. When the sample size increases, the maps produced
by the di�erent designs converge to similar accuracy values. In a case study on large
scale soil organic carbon mapping, a sampling density greater than 1 sampling unit
per 4000 km2 decreases markedly the di�erence in term of average MSE between
designs. A design optimized for the mean squared shortest standardized distance in
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the feature space has the closest match with the optimized design in terms of MSE.
By analysing the distribution of the sampling locations in both geographic and fea-
ture space, I further show that the optimized design is not spread in the geographic
space, but seems to be spread somewhat uniformly in the feature space, and espe-
cially in the most important covariates of the machine learning model. It is however
di�cult to draw further conclusions because of the complex spread of the units in
feature space. Further research is needed in this direction.

Sampling design optimization becomes more complex when the ultimate goal is to
provide a map used as input for a model whose output is the main interest. This is
done by integrating geostatistics for mapping rainfall and Bayesian calibration of a
hydrological model for predicting discharges in Chapter 6. The Bayesian calibra-
tion enables to capture model input, initial state, parameter and structural uncer-
tainty, while also taking uncertainties in the output measurements into account. In
a case study predicting river discharge using a rainfall-runo� model and maps of
rainfall as input, a single rain gauge is su�cient to obtain accurate model parame-
ter calibration and discharge predictions. Adding up to �ve rain gauges improves
the model prediction. Adding even more only produces a marginal improvement
of the prediction accuracy. Calibrating the rainfall time series as additional pa-
rameters leads to more accurate model performance compared to the case where
rainfall uncertainty is not updated using discharge measurements. Furthermore, it
is demonstrated for the case study that model parameter uncertainty is the main
contributor to the posterior discharge uncertainty and that input uncertainty has a
relatively small contribution. However, the study also shows that Bayesian calibra-
tion of rainfall has serious computational disadvantages. In particular, calibrating a
large number of rainfall input parameters remains a serious challenge.

The thesis synthesis is given in Chapter 7. It discusses the �ndings of this thesis,
compares these with existing literature, gives directions for future research and pro-
vides a personal re�ection on sampling design optimization practices. On the basis
of this thesis, I conclude that there is no single best optimal design. It is very much
case dependent. It depends, among others, on: (i) the assumed model of spatial
variation, (ii) the assumption whether we need or need not estimate the parameters
from the data, and (iii) the criterion that is used to optimize the sampling con�g-
uration. This thesis shows that the choice of the criterion has a serious impact on
the optimized design. In practice we may not know the three elements listed above.
This is typically the case at the start of a project when no previous data or expertise
are available but where we need to design a survey. In this case, it is sensible to use
some rules of thumb to design a survey for mapping. Chapter 7 provides some basis
for this.
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This thesis makes a step towards derivation of optimal designs for novel mapping
techniques, with case studies on mapping soil and hydrological variables. But it
also shows that we are just at the beginning of this speci�c �eld of science. In re-
cent years, there has been a large increase in complexity of techniques and models
used for mapping. We make more use of spatially explicit covariate information,
such as remote sensing imagery, and measurements are increasingly inferred rather
than measured. Mapping techniques have become more data-driven and non-linear,
increasing de facto the complexity of the sampling designs that should accompany
such developments. Because sampling is the basis of mapping and has a large im-
pact on cost and accuracy, this research �eld will remain as important as ever in
geostatistics and spatial modelling.
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Résumé

La surveillance et la prévision spatio-temporelle des variables environnementales
demande d’acquérir des observations qu’il est di�cile d’obtenir partout et à tout
moment. Les scienti�ques ne peuvent ainsi collecter qu’un fragment, un échan-
tillon de la variable étudiée dans l’espace et dans le temps, dans le but d’utiliser cet
échantillon pour déduire et cartographier cette variable aux endroits et moments
non visités. L’échantillonnage peut représenter une tâche coûteuse et fastidieuse.
En conséquence, il est nécessaire de disposer de stratégies e�caces pour produire
un plan d’échantillonnage optimal pour la cartographie.

La plupart des études menées sur l’optimisation du plan d’échantillonnage se can-
tonnent au cas de la cartographie prédictive utilisant la géostatistique. Au cours des
dernières années, les modèles géostatistiques et les techniques de cartographie asso-
ciées ont largement évolué, nécessitant une adaptation des plans d’échantillonnage
disponibles. Cette thèse a ainsi pour principal objectif d’aborder le plan d’échan-
tillonnage de quatre avancées récentes en cartographie.

Le Chapitre 3 explore l’optimisation du plan d’échantillonnage pour un modèle
géostatistique de variance non stationnaire dé�ni dans le Chapitre 2. La prise en
compte de cette non-stationnarité dans la variance des propriétés environnemen-
tales des paysages complexes permet de mieux quanti�er l’incertitude associée aux
cartographies. Cette méthode est appliquée dans une étude de cas de cartographie
des précipitations journalières dans le nord de l’Angleterre et d’optimisation spatiale
des pluviomètres. Je montre dans ce chapitre que la prévision spatiale et temporelle
des précipitations tire avantage d’un modèle qui inclut la non-stationnarité dans la
moyenne et la variance, comme le montrent les statistiques de vraisemblance et de
critère d’information d’Akaike. L’optimisation du réseau pluviométrique est obte-
nue par un recuit simulé spatial. Le réseau de pluviomètres ainsi optimisé améliore
légèrement la précision de la cartographie des précipitations. Le gain de précision
reste limité car j’ai utilisé un échantillon identique pour tous les pas de temps, tan-
dis que les zones avec une plus grande incertitude de prévision varient de jour en
jour. Le plan d’échantillonnage optimisée montre également une con�guration spé-
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ci�que, avec une distribution spatiale assez uniforme mais une densité accrue dans
les zones où la variance résiduelle est grande. Je teste ensuite un plan d’échantillon-
nage optimisé en utilisant une réduction de 10% du nombre total de pluviomètres.
Je montre alors une amélioration signi�cative par rapport au plan d’échantillon-
nage original utilisant tous les pluviomètres disponibles. Je conclus que 10% des
pluviomètres peuvent être supprimés (par exemple pour des réductions de coûts)
sans perte de précision pour la cartographique, à la condition que les pluviomètres
soient placés de manière optimale.

Le Chapitre 4 examine l’utilisation de stratégies d’échantillonnage simples pour
prendre en compte un critère englobant à la fois la variance d’erreur de prévision
et l’incertitude des paramètres du variogramme dans la cartographie géostatistique
des propriétés du sol. Pour cela, je teste deux plans d’échantillonnage : le premier
correspond à un répartition homogène des points dans l’espace (couverture spatiale)
et le suivant correspondant à la couverture spatiale complétée par un sous-ensemble
d’unités proches. Je compare ces plans à un plan optimisé pour les critères retenus.
Je montre qu’un plan d’échantillonnage de couverture spatiale donne de piètres ré-
sultats pour la cartographie utilisant le krigeage ordinaire en raison du manque d’in-
formations à courte distance pour estimer les paramètres du variogramme. Ceci est
valable pour des séries de paramètres estimé sur la base d’un variogramme de Ma-
tèrn. Utiliser un échantillonnage optimisé fonctionne toujours légèrement mieux,
mais présente plusieurs inconvénients dont notamment celui de devoir connaître
les paramètres du variogramme. Cela implique également de dé�nir une fonction
objectif caractérisant l’erreur totale et de la minimiser à l’aide d’algorithmes d’opti-
misation. En revanche, un échantillonnage dit de couverture spatiale complétée par
un sous-ensemble d’unités proches o�re des résultats précis pour la plupart des va-
riogrammes testés. Je recommande donc d’utiliser cette dernière méthode d’échan-
tillonnage pour la conception d’un échantillonnage géostatistique, à moins que le
variogramme ne soit préalablement connu (par exemple, un variogramme moyen).
Si un variogramme moyen est disponible pour la propriété d’intérêt, il peut être uti-
lisé pour optimiser l’échantillonnage. Je teste ensuite le nombre minimum d’unités
nécessaires pour estimer le variogramme d’une étude géostatistique et montre que
cela dépend fortement du degré de corrélation spatiale de la variable étudiée. Pour
les grandes valeurs de portée e�ective du variogramme et petit ratios de pépite sur
palier, il est montré que seulement 15 unités su�sent pour rendre l’analyse géo-
statistique intéressante, c’est-à-dire plus précise qu’une estimation fondée sur un
échantillonnage non probabiliste.

La cartographie n’est pas toujours e�ectuée à l’aide de méthodes géostatistiques. Il
existe un intérêt croissant pour la cartographie utilisant des techniques d’apprentis-
sage automatique non linéaires basé sur les données. L’objectif du Chapitre 5 est
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d’étendre nos connaissances sur l’optimisation de l’échantillonnage pour la carto-
graphie à l’aide de forêt d’arbres décisionnels et de la comparer aux plans d’échan-
tillonnage conventionnels. J’ai testé la méthodologie dans le cadre de scénarios d’ap-
plication potentiels, en cartographiant le carbone organique de la couche super�-
cielle du sol à l’échelle européenne à l’aide des données LUCAS en tant que popu-
lation d’intérêt. Dans ce chapitre, je démontre qu’un échantillonnage optimisé est
toujours plus précis que d’autres plans d’échantillonnages couramment utilisés. Ce-
pendant, cette approche n’est possible que dans un cas restreint où on procède à un
sous-échantillonnage d’un jeu de données existant avec des valeurs connues de la
propriété du sol. En comparant l’erreur quadratique moyenne (EQM) des cartes ob-
tenues par un échantillonnage optimisé à celles obtenues par des plans échantillon-
nages communs, il est montré que l’optimisation d’un échantillonnage en termes
d’EQM n’est pas toujours intéressant. Lorsque la taille de l’échantillon augmente,
les précisions des cartes produites par les di�érents type échantillons convergent
vers des valeurs similaires. Dans une étude de cas sur la cartographie du carbone or-
ganique du sol à grande échelle, une densité d’échantillonnage supérieure à 1 unité
d’échantillonnage par 4000 km2 réduit considérablement la di�érence en terme de
EQM moyen entre les types d’échantillons. Un échantillon optimisé pour la dis-
tance normalisée quadratique moyenne la plus courte dans l’espace des covariables
correspond le mieux à un échantillon optimisé en termes d’EQM. En analysant la
distribution des localisations des échantillons dans l’espace géographique et dans
l’espace des covariables, je montre également qu’un échantillon optimisé n’est pas
distribué uniformément dans l’espace géographique, mais semble être répartie de
manière assez uniforme dans l’espace des covariables, et en particulier en considé-
rant les variables les plus importantes pour le modèle d’apprentissage automatique.
Il est toutefois di�cile de tirer des conclusions supplémentaires en raison de la dis-
persion complexe des unités dans l’espace des covariables. Des recherches complé-
mentaires sont nécessaires dans cette direction.

L’optimisation du plan d’échantillonnage devient plus complexe lorsque le but ul-
time est de fournir une carte utilisée comme entrée pour un modèle dont la prévision
est le principal objectif. J’aborde cette question dans le cas où la géostatistique est
utilisée pour la cartographie des précipitations et la calibration bayésienne d’un mo-
dèle hydrologique pour la prévision des débits au Chapitre 6. La calibration bayé-
sienne permet de capturer les incertitudes d’entrée, d’état initial, de paramètre et de
structure du modèle, tout en tenant compte des incertitudes des mesures de sortie.
Dans une étude de cas de prévision du débits d’une rivière à l’aide d’un modèle pluie-
ruissellement et de cartes des précipitations, un seul pluviomètre peut su�re pour
obtenir un étalonnage précis des paramètres du modèle et des prévisions de débits.
L’ajout de cinq pluviomètres améliore cependant la prévision du modèle. En ajouter
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davantage ne produit qu’une amélioration marginale de la précision des prévisions.
Le calibrage de la série chronologique des précipitations en tant que paramètres sup-
plémentaires permet d’obtenir des performances de modèle plus précises que dans
le cas où l’incertitude des précipitations n’est pas actualisée à l’aide des mesures de
débit. En outre, il est démontré pour l’étude de cas que l’incertitude des paramètres
du modèle est le principal facteur d’incertitude du la loi postérieure du débit et que
l’incertitude des intrants a une contribution relativement faible. Cependant, l’étude
montre également que l’étalonnage bayésien de la pluviométrie présente de graves
inconvénients de calcul. En particulier, la calibration dans un temps raisonnable d’un
grand nombre de paramètres d’entrée de pluie reste un dé� majeur.

La synthèse de la thèse est présentée au Chapitre 7. Elle rappelle les résultats de
cette thèse, les compare à la littérature existante, donne des orientations pour les
recherches futures et fournit une ré�exion personnelle sur les pratiques d’optimisa-
tion des plans d’échantillonnages. Sur la base de cette thèse, je conclue qu’il n’existe
pas un unique plan d’échantillonnage optimal. Cela dépend beaucoup de la �nalité de
ce plan et, entre autres : (i) du modèle supposé de variation spatiale, (ii) de l’hypo-
thèse selon laquelle nous avons besoin d’estimer ou non les paramètres à partir des
données, et (iii) du critère utilisé pour optimiser la con�guration d’échantillonnage.
Cette thèse montre que le choix du critère a un impact important sur l’échantillon
optimisée. En pratique, nous pouvons ne pas connaître les trois éléments énumérés
ci-dessus. C’est généralement le cas au début d’un projet lorsqu’aucune donnée ou
expertise antérieure n’est disponible, mais qu’il est nécessaire de concevoir un plan
d’échantillonnage. Dans ce cas, il est judicieux d’utiliser certaines règles empiriques
pour concevoir une plan d’échantillonnage à des �ns de cartographie. Le Chapitre
7 fournit une base pour cela.

Cette thèse a pour ambition de constituer un pas en avant vers la dérivation de plans
d’échantillonnage optimaux pour de nouvelles techniques de cartographie, avec des
études de cas sur la cartographie des variables hydrologiques et pédologiques. Mais
elle montre aussi que nous ne sommes qu’au début de ce domaine scienti�que spé-
ci�que. Ces dernières années, la complexité des techniques et des modèles utili-
sés pour la cartographie a considérablement augmenté. Nous utilisons davantage
les informations sur des covariables spatialement explicites, telles que les images
de télédétection, et les mesures sont de plus en plus déduites plutôt que mesurées.
Les techniques de cartographie sont devenues davantage axées sur les données et
modèlent des processus non linéaires, augmentant de fait la complexité des plans
d’échantillonnage devant accompagner de tels développements. Parce que l’échan-
tillonnage est la base de la cartographie et a un impact important sur les coûts et
la précision des prévisions, ce domaine de recherche restera aussi important que
jamais en géostatistique et en modélisation spatiale.
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It was an early autumn morning of 2017, the air was cool and sky was grey. The
heavy night rain had slowed down to a faint drizzle. There I found myself struggling
in a �eld between the villages of Cotgrave and Keyworth, Southeast of Nottingham.
The night rain had turned the ground into thick mud. The farmer had ploughed
the �eld a day earlier, and left the path with a layer of what the British scientists
elegantly classi�ed as “Slowly permeable, seasonally wet, slightly acid but base-rich
loamy and clayey soils”. My landlord in Cotgrave had lent me a red kid’s bike for
the time of my stay. The bike was too small for me, in particular to cross the hilly
landscape between my apartment and the British Geological Survey in Keyworth.
That day of November, the sticky clayey soils were stronger than what my legs
could take, pedalling on a small bike. I continued walking through the mud when
the drizzle turned once again into rain. The situation must have been somewhat
funny to the observer’s eye: A Frenchman pushing that tiny bike through the mud
under the rain, trying hard his way to work in the English countryside but employed
in the Netherlands. How did I get there?

Obviously, this was because of my position as a PhD candidate in Wageningen.
When I sent an application to Gerard and Dick in April 2015, as I realize now, I had
no idea of what kind of adventure I was actually about to apply to. The PhD topic
was hydrology and applied mathematics oriented and supported by a Marie-Curie
ITN. I had intuitively applied at the project at the time, not with great excitement
for the topic itself, rather because I knew by names the two PhD advisors: Gerard
Heuvelink and Dick Brus. I was neither a hydrologist nor a mathematician, but they
decided to give the motivated young scientist a chance to work on the project. With
hindsight, I dare to say that working on a PhD is an easy task when the supervision
is excellent.

Gerard, as my daily supervisor, you were always patient with me and available to
answer my questions. I have always admired how you could explain me complicated
matters and share your knowledge in such a way that even my grandmother would
understand. You gave me the necessary freedom to conduct my research while being
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always there to provide constructive and positive comments, at all steps of my PhD.
Dick, as my co-supervisor, I greatly appreciated your directness and your attention
to detail. In 2016, when I sent you a draft of my �rst article, you answered very
frankly that the work was “sloppy”, and you explained me how to improve it. This
was very valuable, as I constantly read and improved my manuscript afterwards
before sending you a draft to comment. Moreover, I realized the importance of
choosing the right terms in the right context.

The successful completion of my PhD was made possible with the trust I had in my
supervisors, and my appreciation to both their personal and scienti�c qualities. I will
continue to build upon with what I have learned from them during my career. You
made me enjoy my time as a PhD candidate, even though I was based in Wageningen
(sic).

Mais revenons à nos moutons ! 1

With further thought, the actual reason why I had soaked clothes and muddy shoes
is because Murray Lark and Ben Marchant kindly accepted to host and supervise
me for three months at the British Geological Survey in Keyworth. But I would not
pass them the buck of my misadventure. Actually, I made the PhD article that I like
most with them. Ben provided daily supervision and was open for discussions at
all times, while Murray made time to meet me and provided ideas even though he
was busy with his move to the University of Nottingham and his o�ce was full of
boxes. I also made three other secondments within the QUICS project: in Bristol,
Delft and Sydney. In Bristol, I was advised by Miguel Rico-Ramirez and I worked
together with Francesca Cecinati. I also appreciated sharing my o�ce with Omar
Wani, who demonstrated me that it is possible to be e�cient and work late at night
without drinking co�ee. This was an eye opening experience to me. Late 2016, I
went to Delft as Francois Clemens and Jeroen Langeveld kindly accepted to host me
for three months. There, I spent time with Antonio Moreno Ródenas, another QUICS
fellow, who is passionate about the PhD topic of his girlfriend and builds amazing
robots to detect where insects lay their eggs. My series of secondments ended up
in Sydney, where I was welcomed by Budiman Minasny and Alex McBratney. I
had a great time in Sydney, thanks to the enthusiasm of Budiman and the company
of Mario, Vanessa, José, Yuxin and all the others. I look forward to meeting and
working together again soon.

Before my secondments, my infancy in research started in Angers in 2009, where
I made my Bachelor degree and received teaching in geomorphology by Grégoire
Maillet, soil science by Aziz Ballouche and petrology by Fabrice Redois. You three

1. But let us come back to the topic!
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piqued my interested for these �elds and at the end of my �rst year, I knew that
I wanted to work on a PhD. Also, I spent four years in Tübingen for my Master’s
degree. I arrived there by coincidence during an Erasmus, but it was no serendipity
when I asked to stay there. I learned a lot from Thomas Scholten, Karsten Schmidt,
Leonardo Ramirez-Lopez and Thorsten Behrens. Thomas, you also gave me in-
credible opportunities; I remember visiting you in October 2012, after a course on
soil mapping, to ask with my imperfect German whether I could contribute to the
“YangtzeGeo” project. You accepted immediately and introduced me to your PhD
student Felix Stumpf. With Felix, I went to China several times, I learned English by
talking with him during the endless �eld campaigns and I met a friend. Your deci-
sion to accept me in this project guided my path to this PhD, but also, surprisingly,
to the mud on that drizzly morning in November.

I now continue my walk in the muddy path and think, with a hint of irony, about
the funding that I received to make this moment possible. I was funded by a Marie-
Curie ITN. The project was organized on a daily basis by Will Shepherd and Alma
Schellart. This was a lot of work and you allowed me and all other QUICS fellows
to have an unforgettable and enjoyable PhD experience. You also made it possible
(with all the other organizers) for me to meet the other QUICS fellows: Nazmul,
Vasilis, Vivian, Carla, Francesca, Sanda, Mathieu, Mahmood, Antonio, Manoranjan,
Kasia, Ambuj, Arturo and Omar. One cannot feel lonely with so many (remote)
o�ce mates. Actually, I also happened to have real o�ce mates on my occasional
moments in Wageningen: Simona, Arturo, Marcos, Kasia, Marijn, Jasper, Selçuk,
Luc and the others. I specially thank Titia for sharing some beers and funny stories
and to make the o�ce more lively than a cemetery. I am also grateful for receiving
additional funds from the LEB and the Huub and Julienne Spiertz funds.

On a more amusing note, I also see myself telling that story to my friends from the
village. They think I spend my days on a chair, the fonctionnaire as they call me.
I do not expect that they believe me, but to share a few beers, funny stories and
stupid jokes, as we always do. Adrien, Julien, Romain, Alexis, and their girlfriends
(or boyfriends) are always of great company. But I hope you will behave on my
defence.

If I tell the exact same story to my friends from my Tübingen time: David, Jordi,
Marie, Nerea, Andrea, Manuel, Marie-Léonie, Gerard and all the others, I expect
them not to be surprised. They think I am a geologist always in the �eld. I can
explain you again what I do around a He�eWeizen in Tangente.

When I am tired, I know that I can always go back to my village, to the family house.
When moving from place to place all around the world, it is important to have a base
to rest and �nd stability. I left home when I was 17 because I wanted to move fast.
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Years later, I come back when I need to slow down.

I kept the very best for the end. Anna, like it meant to be, I met you the day I arrived
in the Netherlands to start my PhD. You supported me in every aspect of the life in
the Netherlands. You listened to my complains about Wageningen and helped me to
escape whenever I needed it. This whole adventure would not have been the same
without you.

Arriving on the tarred road, at the intersection of Nicker hill and Willow brook. I
realize that the loose mud on my shoes will soon vanish as I walk down the street.
The clouds on the horizon seem to be clearing out. What an engaging and fresh
start to the day.
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