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Abstract

If a map is constructed through prediction with a statistical or non-statistical

model, the sampling design used for selecting the sample on which the model is

fitted plays a key role in the final map accuracy. Several sampling designs are avail-

able for selecting these calibration samples. Commonly, sampling designs for map-

ping are compared in real-world case studies by selecting just one sample for each

of the sampling designs under study. In this study, we show that sampling designs

for mapping are better compared on the basis of the distribution of the map quality

indices over repeated selection of the calibration sample. In practice this is only fea-

sible by subsampling a large dataset representing the population of interest, or by

selecting calibration samples from a map depicting the study variable. This is illus-

trated with two real-world case studies. In the first case study a quantitative vari-

able, soil organic carbon, is mapped by kriging with an external drift in France,

whereas in the second case a categorical variable, land cover, is mapped by random

forest in a region in France. The performance of two sampling designs for mapping

are compared: simple random sampling and conditioned Latin hypercube sam-

pling, at various sample sizes. We show that in both case studies the sampling dis-

tributions of map quality indices obtained with the two sampling design types, for

a given sample size, show large variation and largely overlap. This shows that

when comparing sampling designs for mapping on the basis of a single sample

selected per design, there is a serious risk of an incidental result.

Highlights

• We provide a method to compare sampling designs for mapping.

• Random designs for selecting calibration samples should be compared on

the basis of the sampling distribution of the map quality indices.
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1 | INTRODUCTION

In recent years, there has been an increase in digital soil
mapping (DSM) activities (Arrouays, Lagacherie, &
Hartemink, 2017). Digital maps of soil properties are

predicted from a geostatistical model or machine learning
algorithm fitted on a sample of units selected from the area
to be mapped. Because the sample is the basis for mapping,
its size and spatial pattern play a key role in the resulting soil
map accuracy. Hereafter a sample used for fitting a statistical
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model or training a machine learning algorithm is referred to
as a calibration sample. Sampling designs used for selecting
calibration samples that are subsequently used for mapping
are referred to as sampling designs for mapping.

In the statistical and DSM literature, several solutions
have been proposed to select the sampling locations for
fitting or training a model and mapping. For an overview
of common sampling designs for soil mapping, we redirect
readers to De Gruijter, Brus, Bierkens, and Knotters (2006)
and Brus (2019). The large number of available sampling
designs has logically led to studies comparing the effect
sampling designs have on the resulting mapping accuracy.
Schmidt et al. (2014) compared three different sampling
designs and their effect on the mapping accuracy of five
soil properties at field scale. In this study, with each design
a single sample is collected in the field and used for model
fitting and prediction. Besides, to validate a map obtained
with the calibration sample of a given design, the calibra-
tion samples of the other designs were used, so that no
reliable conclusions can be drawn from this study. Simi-
larly, Werbylo and Niemann (2014) evaluated stratified
random and conditioned Latin hypercube sampling
designs for soil moisture downscaling at three local-scale
catchments. The selection of samples with the designs
under study is repeated 100 times and compared using the
averaged values of the Nash-Sutcliffe coefficient of effi-
ciency between the observed and predicted downscaled
patterns. The authors found mixed results, stratified ran-
dom sampling being more efficient than conditioned Latin
hypercube sampling for small sample sizes (fewer than
30 units) while it was the opposite for larger sample sizes.

Repeated selection of samples with a probability sam-
pling design leads to different samples and different esti-
mates of the population mean or total. This is also the case
for commonly used sampling designs for mapping, such as
spatial coverage sampling supplemented by short distance
points (Lark & Marchant, 2018), feature space coverage
sampling (Brus, 2019), conditioned Latin hypercube sam-
pling (Minasny & McBratney, 2006) and model-based
designs for mapping, such as the designs proposed by Van
Groenigen (2000), Brus and Heuvelink (2007), Marchant
and Lark (2007) or Wadoux, Marchant, and Lark (2019),
among others. In all these sampling designs a random
number generator is used at some stage in the selection
process. In the design proposed by Lark and March-
ant (2018) the points of the supplemental sample are
selected randomly at a fixed but random distance from a
(random) subset of the spatial coverage sample. In feature
space coverage sampling, k-means is used to minimize a
criterion. The initial clustering is chosen randomly. In con-
ditioned Latin hypercube sampling and model-based sam-
pling designs for mapping a criterion is minimized by
simulated annealing in which proposal samples are

generated by random selection of one point of the current
sample and shifting it to a random selected location. The
randomness in the selection of the locations of a calibration
sample may have an impact on the resulting map accuracy.
This has as yet been disregarded in previous studies evalu-
ating and comparing sampling designs for mapping.

The aim of our paper is to show the importance of
repeated selection of calibration samples from real-world or
simulated populations when comparing sampling designs
for mapping in which randomness is involved. Similar to
comparing probability sampling designs for estimating the
population mean on the basis of the sampling distribution of
the estimated population mean, not just on the basis of the
error obtained with a single probability sample, sampling
designs should be compared on the basis of the distribution
of map quality indices over repeated selection of samples.
We illustrate this with two real-world case studies, one for a
quantitative variable and one for a categorical variable. We
compare simple random sampling (SRS) and conditioned
Latin hypercube sampling (cLHS) at various sample sizes.

2 | THEORY AND METHODS

2.1 | Map quality indices

A wide variety of map quality indices is available
(Congalton, 1991; Janssen & Heuberger, 1995;
Stehman, 1997). Commonly used quality indices of contin-
uous maps are the population means of the prediction error
(ME) and of the squared prediction error (MSE), defined as:

ME=
1
N

XN
i=1

ɛ sið Þ, ð1Þ

MSE=
1
N

XN
i=1

ɛ sið Þ2, ð2Þ

where ɛ sið Þ= ẑ sið Þ−z sið Þ is the error, in which z and ẑ
denote the measured and predicted soil variable at loca-
tion si, i = 1, …, N, respectively, and N is the total number
of population units.

The quality of categorical maps is commonly quanti-
fied by the overall accuracy (OA), defined as:

OA=
1
N

XN
i=1

a sið Þ, ð3Þ

where a(si) is an indicator defined as follows:

a sið Þ= 1 ĉ sið Þ= c sið Þ
0 ĉ sið Þ 6¼ c sið Þ

�
, ð4Þ
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with ĉ sið Þ the predicted class for population unit i and
c sið Þ the true class for that unit. For infinite populations,
the summation in Equations (1)–(3) is approximated by an
integral.

2.2 | Evaluation of sampling designs for
mapping

We propose to evaluate random designs for mapping on
the basis of the sampling distribution of map quality indi-
ces: fp(ME), fp(MSE) and fp(OA). The subscript p refers to
a sampling design for selecting the calibration samples.
Of special interest are the expectation and variance of
these distributions. The expectation and variance of the
MSE are defined as:

Ep MSEð Þ=
X
S
MSE Sð Þ p Sð Þ, ð5Þ

Vp MSEð Þ=
X
S

MSEðSÞ−EpðMSEÞ� �2
p Sð Þ, ð6Þ

with MSE Sð Þ being the population MSE for calibration
sample S and p Sð Þ the selection probability of sample S .
By replacing MSE in Equations (5) and (6) by ME and
OA we obtain the definition of the expectation and vari-
ance of the mean error and overall accuracy, respectively.
Note that Ep(MSE) = Vp(ME)+ {Ep(ME)}2. Although an
infinite number of samples S can be selected, in practice
we proceed by selecting a large but finite number of sam-
ples from the population.

These are sampling distributions of the overall map
quality. For mapping we propose to evaluate the sam-
pling designs also on the basis of the sampling distribu-
tions for individual units (points), fp{ɛ(si)}, fp{ɛ

2(si)} and
fp{a(si)}, i = 1, …, N. Maps of the expectation and vari-
ance of these point-wise distributions may reveal perfor-
mance characteristics that remain undiscovered when
looking at the distribution of overall map quality indices
only. The expectation and variance of the squared error
are defined as:

Ep ɛ2i
� �

=
X
S
ɛ2i Sð Þ p Sð Þ, ð7Þ

Vp ɛ2i
� �

=
X
S

ɛ2i Sð Þ−Ep ɛ2i
� �� �2

p Sð Þ, ð8Þ

with ɛi = ɛ sið Þ. The expectation and variance of the errors
and accuracy indicators for individual units are obtained
by replacing ɛ2i in Equations 7 and 8 by ɛi and ai, respec-
tively. Note that Ep ɛ2i

� �
=Vp ɛið Þ+ Ep ɛið Þ� �2

.

The sampling distributions are approximated by inde-
pendent selection of a large number, say R, of calibration
samples. The expectation and variance of the population
mean of the quality indices and of the point-wise map
quality indices are estimated by the average and variance
across these R calibration samples. In the case study with
the continuous variable R = 1,000, whereas R = 400 in
the case study for the categorical variable. For the
squared errors the estimators are:

Êp MSEð Þ= 1
R

XR
S=1

MSE Sð Þ, ð9Þ

V̂p MSEð Þ= 1
R−1

XR
S=1

MSE Sð Þ− 1
R

XR
S=1

MSE Sð Þ
 !2

, ð10Þ

Êp ɛ2i
� �

=
1
R

XR
S=1

ɛ2i Sð Þ, ð11Þ

V̂p ɛ2i
� �

=
1

R−1

XR
S=1

ɛ2i Sð Þ− 1
R

XR
S=1

ɛ2i Sð Þ
 !2

: ð12Þ

To avoid confusion we would like to stress that in this
paper the indices to quantify the quality of a map are not
defined across realizations of a model used for prediction
(mapping), but across realizations of a sampling design
used to select a calibration sample for mapping, as indi-
cated by the subscript p in fp, Ep and Vp. This is also the
case when a statistical model is used for prediction (map-
ping), such as in the second case study hereafter, in
which kriging with an external drift is used. This implies
that, given a calibration sample, the prediction errors at
points, as well as the population mean of the (squared)
errors are fixed quantities, not random variables. By con-
sidering all calibration samples that can be selected by
the sampling design, both the point-wise prediction
errors, as well as the population mean of the errors
become random quantities. The distributions of these
random quantities are not model distributions, but sam-
pling distributions, as indicated by the subscript p in fp.
In a model-based approach the statistical inference is
conditioned on the calibration sample. No other samples
than the one actually selected are considered. Random-
ness is introduced via the statistical model that is used in
the inference, so that the prediction errors at points and
the population mean of the (squared) errors become ran-
dom variables, despite the conditioning on the calibration
sample. The distributions of these random variables are
model distributions, i.e., distributions defined over all
possible realizations of the statistical model, which are

WADOUX AND BRUS 37



fundamentally different from sampling distributions,
which we considered in this paper.

2.3 | Sampling designs for mapping

Two sampling designs for mapping are compared, condi-
tioned Latin hypercube (cLHS) and simple random sam-
pling (SRS).

Conditioned Latin hypercube sampling (cLHS,
Minasny and McBratney (2006)) is an adaptation of the
experimental design Latin hypercube sampling (LHS)
for observational research. The adaptation is needed
because not all combinations of factor levels may be rep-
resented in the population of interest. In cLHS the factor
levels are marginal strata of equal size, i.e., with equal
number of pixels. In total, there are nc marginal strata,
with n the total sample size and c the number of
covariates. With continuous covariates only, a cLHS is
selected by minimizing a weighted sum of two compo-
nents. The first component is the sum over all marginal
strata of the absolute difference of the marginal stratum
sample size and the targeted sample size of one unit.
The second component is the sum of the absolute differ-
ence of the entries of the sample correlation matrix and
population correlation matrix. So in cLHS the marginal
distributions of the covariates are uniformly covered,
while accounting for the correlation between the
covariates.

Simple random sampling is the simplest form of sam-
pling design. It does not require any prior knowledge on
the spatial variation and does not exploit environmental
covariates. In SRS, each unit in the population has equal
probability of being selected and the units are selected
independently from each other.

3 | CASE STUDIES

3.1 | Mapping topsoil organic carbon
content

We used the measurements collected over France within
the framework of the European Land Use/Cover Area
frame Statistical Survey (LUCAS). The database is com-
posed of N = 2,947 georeferenced values of the topsoil
(0–30 cm) organic carbon (SOC, in g kg−1) as measured
by an automated vario MAX CN analyzer (Elementar
Analysensysteme GmbH, Germany) (Tóth, Jones, &
Montanarella, 2013). The SOC values were log-
transformed to correct for the highly skewed (skew-
ness = 6.12) distribution. In this study, the N = 2,947 log-
transformed SOC values are considered as our population

of interest. In other words, we ignore that the LUCAS
data are a sample of another area of interest (France). In
addition, we collected five environmental covariates for
modelling the mean (spatial trend). The covariates were
either resampled using bilinear interpolation or aggre-
gated to conform with a resolution of 1 km × 1 km, and
their value was extracted to the location of the N = 2,947
LUCAS sampling locations. The covariates were the
Landsat Band 3 (red) for the year 2014, the long-term
averaged mean annual surface temperature (daytime)
MODIS (in degrees Kelvin), the total annual precipitation
(in mm/year), the elevation (in metre) and the multi-
resolution index of valley bottom flatness (MRVBF) in
metre × 100.

In this study, predictions of the topsoil log-
transformed organic carbon were obtained by kriging
with an external drift (Webster & Oliver, 2007). We fitted
an exponential variogram model to the residuals of the
soil property using ordinary least square in an automatic
fitting and prediction procedure (Hiemstra, 2015). The
linear trend was composed of the covariates described
above.

For each calibration sample the MSE was computed
by using the calibrated model to predict log-transformed
organic carbon for all LUCAS points, including the points
used for calibrating the model.

3.2 | Land cover classification

In the second case study, we used the CORINE Land
Cover (CLC) inventory map updated in 2018 (Feranec,
Soukup, Hazeu, & Jaffrain, 2016) as our variable of inter-
est. The CLC map is a categorical map of 44 classes cover-
ing the whole of Europe with grid cells of 100 m × 100 m
resolution. We used a subset of 39,151 km2 of this map,
covering the French region Centre-Val de Loire. In this
regional area, 26 out of the 44 land cover classes are pre-
sent. To speed up computation, we further selected a
large sub-grid of the CLC map with a spacing of 400 m,
resulting in N = 247,061 grid points. This large subsam-
ple is used as a basis to collect the calibration samples. A
set of 12 environmental covariates were used as predictor
in the model. The covariates were the water table depth
in metre, the average soil and sedimentary-deposit thick-
ness in metre, the Landsat Band 4 (NIR) for the year
2014, the Landsat Band 3 (red) for the year 2014, the
Landsat Band 5 (SWIR) for year 2014, the Landsat Band
7 (SWIR) for year 2014, the long-term averaged mean
annual surface temperature (daytime) MODIS
(in Kelvin), the total annual precipitation (in mm/year),
the elevation (in metre), the terrain slope in radian
× 100, SAGA Wetness Index in metre × 10 and the
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multiresolution index of valley bottom flatness (MRVBF)
in metre × 100.

For categorical variables, predictions were made by a
random forest (Breiman, 2001) model using the
covariates listed above. We used the implementation pro-
vided by Wright and Ziegler (2017), and set the tuning
parameters nodesize and mtry to their default values and
ntree to 1,000.

4 | RESULTS

4.1 | Quality of organic carbon map

The estimated p-expectation of the population ME
(Êp MEð Þ ) is about zero for both sampling designs SRS
and cLHS and all sample sizes (Figure 1). The sampling
distribution of the population ME becomes narrower
around zero for larger sample sizes. There is no clear
visual difference between the distributions of the ME for
the two sampling designs SRS and cLHS, except for the
somewhat narrower sampling distributions for cLHS with
sample sizes of 50 and 200. This is confirmed by the mini-
mum and maximum values presented in Table 1. Overall,
all statistics characterizing the sampling distribution of
the population ME are about equal for SRS and cLHS, for
all sample sizes.

Figure 2 shows maps of the estimated p-expectation
of the error at individual points (Êp ɛið Þ). The maps show
that for a few points the expected values clearly differ
from zero. There is no spatial correlation among the
expectations of the error at points. This was tested by
visual inspection of the sample variograms computed on
the expectations of the error at points. Visually there is
no clear difference between SRS and cLHS. This is con-
firmed by the summary statistics of the p-expectation of
the errors at the N = 2,947 points provided in Table 2: all
summary statistics were about equal for SRS and cLHS
for all calibration sample sizes.

The median of the approximated sampling distribution
of the population MSE decreases with the calibration sam-
ple size (Figure 3). The sampling distribution of the popu-
lation MSE becomes narrower with increasing sample
size. Visually there is no clear difference between the sam-
pling distributions of the population MSE for SRS and
cLHS. Overall, Table 3 shows that all statistics characteriz-
ing the sampling distribution of the population MSE are
about equal for SRS and cLHS, for all sample sizes.

Figure 4 shows maps of the square root of the p-
expectation of the squared error at individual points

(
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Êp ɛ2ið Þ

q
). Hereafter, we will shortly refer to these values

as the RMSE values at points. Note that we use the
square root for visualization purposes, but that the values

FIGURE 1 Approximated sampling distributions of the population ME, for the first case study, for SRS and cLHS and various sample

sizes [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Summary statistics of

the approximated sampling

distributions of the population ME, for

the first case study, SRS and cLHS and

various sample sizes

Minimum Median Mean Sd Maximum

SRS cLHS SRS cLHS SRS cLHS SRS cLHS SRS cLHS

50 −0.27 −0.25 0 0 0 0 0.08 0.08 0.38 0.22

100 −0.20 −0.25 0 0 0 −0.01 0.06 0.06 0.18 0.18

150 −0.13 −0.25 0 0 0 0 0.04 0.04 0.15 0.16

200 −0.14 −0.25 0 0 0 0 0.04 0.04 0.15 0.12

Abbreviation: cLHS, conditioned Latin hypercube sampling; ME, mean error; Sd, standard deviation; SRS, simple random sampling.
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reported in Tables 3 and 4 are not transformed. The maps
show that for a few points the RMSE values are large

(larger than 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log g kg-1
� �q

), which means that on aver-

age over repeated calibration sampling the predictions at

these points are inaccurate. There seems to be no clear
spatial correlation among the RMSE values at points.
Visually, there is also no difference between the RMSE
values at points for SRS and cLHS. This is confirmed by

FIGURE 2 Maps of the estimated expectation of the error at individual points (Êp ɛið Þ) for the first case study, for SRS and cLHS and

various calibration sample sizes [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Approximated sampling distributions of the population MSE, for the first case study, for SRS and cLHS and various sample

sizes [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Summary statistics of

the p-expectation of the prediction error

at the N = 2,947 points, for the first case

study, for SRS and cLHS and various

sample sizes

Minimum Median Mean Sd Maximum

SRS cLHS SRS cLHS SRS cLHS SRS cLHS SRS cLHS

50 −3.24 −3.23 −0.02 −0.03 0 0 0.53 0.53 3.08 3.05

100 −3.20 −3.23 −0.03 −0.03 0 −0.01 0.51 0.51 2.98 2.99

150 −3.17 −3.23 −0.03 −0.04 0 0 0.50 0.50 2.92 2.93

200 −3.07 −3.23 −0.03 −0.03 0 0 0.49 0.49 2.85 2.93

Abbreviation: cLHS, conditioned Latin hypercube sampling; Sd, standard deviation; SRS, simple random sampling.
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Table 4: the summary statistics of the RMSE values at
N = 2,947 points were about equal for SRS and cLHS, for
all calibration sample sizes.

4.2 | Quality of land cover map

The median of the approximated sampling distribution of
the population OA increases with the calibration sample
size (Figure 5). Values of the median of the population
OA for the cLHS design are slightly higher compared to
SRS, for all sample sizes. Figure 5 also shows that the
sampling distributions of the population OA are all com-
prised in a small range of values between about 0.5 and
0.75. Overall, Table 5 shows that all statistics characteriz-
ing the sampling distribution of the population OA are
about equal for SRS and cLHS, for all sample sizes.

Figure 6 shows maps of the expectation of the clas-
sification indicator at individual points (Êp aið Þ). Here-
after we will refer to Êp aið Þ as the mean accuracy at
points. The maps show no clear visual difference in the
mean accuracy at points. Minor differences between cal-
ibration sample sizes are visible in the South of the
study area, where the mean accuracy at points increases
with the sample size. For some of the population units,
the mean accuracies are equal to zero, which means
that the landcover class is never correctly classified
(over repeated selection of the calibration sample and
prediction). There is a clear spatial pattern in the maps.
The poorly classified areas correspond to the cities
(e.g. the city of Orléans) and to the main roads. All
summary statistics of the mean accuracy at the
N = 247,061 points are about equal for cLHS and SRS
(Table 6).

TABLE 3 Summary statistics of the approximated sampling distributions of the population MSE, for the first case study, for SRS and

cLHS and various sample sizes

Minimum Median Mean Sd Sd/Mean Maximum

SRS cLHS SRS cLHS SRS cLHS SRS cLHS SRS cLHS SRS cLHS

50 0.29 0.29 0.34 0.34 0.35 0.35 0.04 0.03 0.10 0.09 0.65 0.61

100 0.28 0.29 0.31 0.31 0.32 0.31 0.02 0.02 0.06 0.06 0.42 0.42

150 0.27 0.29 0.30 0.29 0.30 0.30 0.01 0.01 0.04 0.04 0.35 0.39

200 0.26 0.29 0.28 0.28 0.29 0.29 0.01 0.01 0.04 0.04 0.36 0.38

Abbreviation cLHS, conditioned Latin hypercube sampling; MSE, mean squared error; Sd, standard deviation; SRS, simple random
sampling.

FIGURE 4 Maps of the square root of the estimated p-expectation of the squared error at individual points (Êp ɛ2i
� �

) for the first case

study, for SRS and cLHS and various calibration sample sizes [Color figure can be viewed at wileyonlinelibrary.com]
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5 | DISCUSSION

Our results show the importance of repeating the selec-
tion of the calibration samples when comparing sampling
designs with randomness in the sample selection proce-
dure. By repeating the selection of the calibration sam-
ples, we obtained distributions of the map quality
indices. Figures 1, 3 and 5 show that this sampling distri-
bution can be wide and that the distributions of different
types of sampling designs can largely overlap for a given
calibration sample size. In our case study, differences
between the designs were hardly visible: both sampling
designs performed about equal on average. If we select a

single SRS and a single cLHS, there was about 50% proba-
bility that using an SRS for calibration resulted in a map
with higher accuracy than using the cLHS for calibration,
and reversely. This implies that there is a serious risk of
an incidental result based on single calibration samples,
showing the superiority of one of the sampling designs,
whereas based on the mean accuracy over repeated cali-
bration sampling, this is not correct.

In our case no differences can be seen between cLHS
and SRS, neither in the sampling distributions of popula-
tion means of (squared) prediction errors (ME, MSE and
OA) nor in the sampling distributions at points. How-
ever, in other cases it may happen that the sampling

TABLE 4 Summary statistics of the p-expectation of the squared errors at the N = 2,947 points, for the first case study, for SRS and

cLHS and various sample sizes

Minimum Median Mean Sd Sd/Mean Maximum

SRS cLHS SRS cLHS SRS cLHS SRS cLHS SRS cLHS SRS cLHS

50 0.03 0.03 0.18 0.17 0.35 0.35 0.60 0.59 1.69 1.71 10.71 10.68

100 0.02 0.03 0.14 0.14 0.32 0.31 0.58 0.58 1.83 1.83 10.57 10.69

150 0.01 0.03 0.13 0.13 0.30 0.30 0.56 0.56 1.90 1.91 10.59 10.70

200 0.01 0.03 0.12 0.12 0.29 0.29 0.55 0.55 1.93 1.93 10.23 9.77

Abbreviation: cLHS, conditioned Latin hypercube sampling; Sd, standard deviation; SRS, simple random sampling.

FIGURE 5 Approximated sampling distributions of the population OA, for the second case study, for SRS and cLHS and various

sample sizes [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 5 Summary statistics of the approximated sampling distribution of the population OA, for the second case study, for SRS and

cLHS and various sample sizes

Minimum Median Mean Sd Sd/Mean Maximum

SRS cLHS SRS cLHS SRS cLHS SRS cLHS SRS cLHS SRS cLHS

50 0.49 0.50 0.59 0.59 0.58 0.59 0.02 0.02 0.04 0.04 0.63 0.63

100 0.55 0.50 0.60 0.61 0.60 0.60 0.01 0.01 0.02 0.02 0.63 0.63

150 0.58 0.50 0.61 0.61 0.61 0.61 0.01 0.01 0.02 0.02 0.63 0.63

200 0.58 0.50 0.61 0.62 0.61 0.61 0.01 0.01 0.02 0.01 0.63 0.63

Abbreviation: cLHS, conditioned Latin hypercube sampling; OA, overall accuracy; Sd, standard deviation; SRS, simple random sampling.
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distributions of overall map quality indices such as OA
and MSE are about equal, but not so the distributions at
points. For instance, when the p-expectation of the popu-
lation ME is close to zero, the p-expectation of the error
at points still can largely differ from zero as long as posi-
tive and negative errors are in balance. A sampling
design with a p-expectation of ME close to zero and
besides small values for the p-expectation of the point-
wise errors, is to be preferred over a sampling design with
larger values for the p-expectation of the point-wise
errors.

Similarly, two designs with about equal values for the
p-expectation of the population MSE can be quite differ-
ent when looking at the spatial variation of the
p-expectation of the squared errors at points.

In our case studies, SRS and cLHS were equivalent in
terms of map accuracy. Several studies (e.g., Castro-
Franco, Costa, Peralta, & Aparicio, 2015; Chu, Lin,

Jang, & Chang, 2010; Contreras, Ballari, De Bruin, &
Samaniego, 2019; Domenech, Castro-Franco, Costa, &
Amiotti, 2017; Schmidt et al., 2014) concluded that cLHS
in combination with kriging or random forest for map-
ping gave the most accurate prediction. These studies
promote the use of cLHS as an effective sampling design
for mapping. We emphasize that the results of the studies
previously cited are possible outcomes (as shown by Fig-
ures 3 and 5), but, their conclusion on a sampling design
performing better than another is potentially incidental
because the selection of the calibration sample was not
repeated. Our case studies, conversely, confirm some
earlier conclusions made by Worsham, Markewitz,
Nibbelink, and West (2012) and later Wadoux, Brus, and
Heuvelink (2019) and Ma, Brus, Zhu, Zhang, and
Scholten (2020). Worsham et al. (2012) compared SRS,
stratified random sampling and cLHS for selecting cali-
bration samples on the basis of the root mean squared

FIGURE 6 Maps of the estimated mean accuracy at points of the second case study, for both SRS and cLHS and different calibration

sample sizes [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 6 Summary statistics of the estimated mean accuracy (Êp aið Þ) at the N = 247,061 points, for the second case study, for SRS and

cLHS and various sample sizes

Minimum Median Mean Sd Sd/Mean Maximum

SRS cLHS SRS cLHS SRS cLHS SRS cLHS SRS cLHS SRS cLHS

50 0 0 0.73 0.75 0.58 0.59 0.41 0.41 0.69 0.69 1 1

100 0 0 0.80 0.82 0.60 0.60 0.41 0.41 0.69 0.69 1 1

150 0 0 0.84 0.85 0.61 0.61 0.42 0.42 0.69 0.69 1 1

200 0 0 0.85 0.86 0.61 0.61 0.42 0.42 0.69 0.68 1 1

Abbreviation: cLHS, conditioned Latin hypercube sampling; Sd, standard deviation; SRS, simple random sampling.
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error of the mapped soil C content over a 12ha field. By
repeating the selection of the calibration sample 10 times
from the population, they showed that while there was a
clear advantage in terms of resulting map accuracy
(RMSE) for stratified random sampling and cLHS over
SRS, the authors did not find an apparent improvement
when using cLHS over stratified random sampling. This
was further confirmed by Wadoux et al. (2019) and Ma
et al. (2020) when comparing sampling designs for map-
ping with random forest. There is need for further
research in this direction.

In practice we do not have exhaustive knowledge of
the population values, so that the map accuracy obtained
with a given calibration sample must be estimated from a
probability sample. The validation sampling error contrib-
utes to the total variance of the map quality index. We esti-
mated this contribution by estimating the expectation over
repeated calibration sampling of the validation sampling
variance of the estimated map quality index. The results
(reported in the Appendix in the Supporting Information)
show that the contribution of the validation sampling
error to the total variance of the map quality index was
large in both case studies, even with a validation sample
size of 200. In most DSM studies, the validation sample
size is limited, and often much smaller than the calibra-
tion sample size. One can then expect that the uncertainty
about the map accuracy is large. In these cases, it is best to
compute confidence intervals of the map quality indices
(ME, MSE and OA) and to test whether differences in the
estimated map quality indices are significant using a
paired t-test or Wilcoxon signed-rank test. This is only fea-
sible when the validation locations are selected by proba-
bility sampling (Brus, Kempen, & Heuvelink, 2011). Since
in practice the objective is to obtain a map (not to estimate
the map quality index) and it is likely that an additional
sampling effort is integrated into the calibration sample
rather than used for validation, we did not pursue any fur-
ther in this direction.

5.1 | Various types of study to compare
designs for mapping

We emphasize the need for various types of study to com-
pare sampling designs for mapping: (a) real-world case
studies, (b) studies where a very large dataset is treated as
the population of interest, (c) studies in which a map of
the study variable is treated as error free so that we have
exhaustive knowledge of the study variable, and
(d) geostatistical simulation studies.

Real-world case studies are by far the most common
approaches to date. In a real-world case study, the cali-
bration samples of the sampling designs under study are

collected in a study area, used to calibrate a model, and
compared based on some map quality indices. An advan-
tage of these studies is that the data are real-world data
that generally do not perfectly behave according to our
probability models. An important disadvantage is that in
general we cannot afford to repeat the selection of cali-
bration samples, so our conclusion about the relative per-
formance of sampling designs for mapping is necessarily
conditioned on the two samples selected. Another disad-
vantage is that the map accuracy is unknown and must
be estimated from a probability sample.

Similar to the real-world case studies, an advantage of
studies where a large dataset is treated as the population
of interest is that the data are real-world data. Another
advantage is that the selection of calibration samples can
be repeated, so that the sampling distribution of the map
quality index can be assessed, and more general conclu-
sions about the relative performance of sampling designs
for mapping can be drawn. The main drawback is that
the population is a sample of the true population of inter-
est. The dataset must be sufficiently large to cover the
characteristics of the true population. Also, the sampling
fraction of the calibration sample must be very small, so
that approximately errorless estimates of the map quality
index can be obtained.

When using a map as reality, we either have a very
large but finite population of raster cells or an infinite
population (polygon map). As a consequence, selection of
calibration samples can be repeated, and the map quality
can be assessed from a very large validation sample, so
that the computed map quality index can be treated as
errorless. However, we treat the predictions as depicted
on the map as errorless predictions. But actually we are
comparing two predictions, one of which is treated as the
ground truth. The map quality indices are only realistic
estimates of the map accuracy in real-world surveys of
the area depicted on the map when the quality of the
map used as reality is very high. It is hard to say whether
the computed map quality index over- or under-estimates
the map quality with real-world surveys. Under the
assumption that the systematic error in the map quality
index is equal for the sampling designs under study, this
type of study still may give valuable information about
the relative performance of sampling designs for mapping
based on the sampling distribution.

In geostatistical simulation studies, a large number of
spatial populations can be generated using various
models of spatial variation. With this type of study, the
sampling distributions of the model expectation of the
map quality index can be computed for the sampling
designs under study. This gives insight into the relative
performance of sampling designs for mapping under vari-
ous models of spatial variation.
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We recommend that, before a novel sampling design
for selecting calibration samples is published, the perfor-
mance of this novel design is compared with existing
sampling designs, not only on the basis of the map accu-
racies obtained with a single sample per design, but pref-
erably on the basis of the sampling distributions of the
map accuracy over repeated calibration sampling. This is
to avoid that a novel design is embraced by many scien-
tists, and after many applications it appears that the
novel design performed worse than existing designs.

The alternative to these empirical studies is to reason
from theory that the proposed design performs better
than existing designs. For instance, in an experimental
design with numerous factors and many levels for each
factor, Latin hypercube sampling is more efficient than a
fully random design of the same size (Pebesma &
Heuvelink, 1999). Minasny and McBratney (2006) there-
fore proposed the cLHS design for observational research,
implicitly assuming that the efficiency of the experimen-
tal design is maintained when applied in observational
studies, despite that the sampling design is necessarily
constrained to factor level combinations that are present
in the study area. They fully relied on this assumption,
and in their paper they did not compare the sampling
designs on the basis of the quality indices of maps
obtained with these samples. Now there is growing evi-
dence (e.g. by Worsham et al. (2012); Wadoux, Brus, and
Heuvelink (2019); Ma et al. (2020) that the performance
of this design is quite poor compared to other sampling
designs for mapping. Studies are needed to understand
how this poor performance can be explained.

6 | CONCLUSIONS

Based on the results and the discussion of these results
we draw the following conclusions:

• Sampling designs for selecting calibration samples in
which randomness is involved should be compared on
the basis of the sampling distribution of map quality
indices at the level of the population as well as the
level of individual points.

• In the two case studies, with simple random sampling
and conditioned Latin hypercube there was consider-
able variation in the map quality index over repeated
sampling for all calibration sample sizes.

• When sampling designs for mapping are compared on
the basis of one sample per design, the difference in
the map quality index between the two sampling
designs for mapping may largely deviate from the dif-
ference in the expectation of the map quality index
over repeated sampling.

• In both case studies there was no benefit in using con-
ditioned Latin hypercube sampling over simple ran-
dom sampling for mapping.

• We recommend to compare sampling designs for map-
ping based on a combination of (a) real-world case
studies, (b) studies in which calibration samples are
repeatedly selected from a very large sample rep-
resenting the population and/or from a map, and
(c) simulation studies in which populations are gener-
ated with various models of spatial variation.
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