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Abstract

Diffuse Reflectance Spectroscopy is a fast, cost-efficient and non-destructive
method well suited to derive a large number of soil properties from a sin-
gle scan. The ability of infrared spectroscopy for predicting soil components
has already been widely described in numerous studies. Especially for the
Mid-Infrared (MIR) regions (400-4000 cm−1), common calibration methods
allow the prediction of various soil properties with high accuracy. In this
respect, the bending or stretching vibration at a precise wavelength allows
qualitative diagnostic on the soil components without any coupled chemi-
cal analysis. Recent studies show the importance of the soil information
summarized into a few wavelengths of the spectrum. However, the use for
soil monitoring remains unexplored. In this thesis, we propose a method
to identify quickly which soil attributes are influenced by various and easily
obtainable environmental secondary information. We demonstrate first that
a few bands in our spectrum can represent most of the variability of a target
soil property. In consequences, through the study of spectra-terrain rela-
tionships, we highlight the link existing between terrain derivative and the
information content of the spectra. We implemented three calibration meth-
ods: Partial Least Square Regression (PLSR), Cubist and Support Vector
Machine (SVM) and then used a robust linear model to define the precision
and significance of the modelled terrain attributes (as independent variable)
to the bands of the spectra. The 140 samples were collected from a het-
erogeneous 4,2 km2 catchment area in Hubei province in central China, and
scanned in the mid-infrared range using an Alpha FT.IR Spectrometer. In
this work, the spectra is first linked to laboratory measured soil properties to
calibrate our models and then linked to 34 terrain attributes derived from a
digital elevation model with a resolution of 25m. The multivariate relation-
ship is qualitatively interpreted based on terrain spectrograms derived from
the fitted models. The results show that (i) the three calibration methods
tested are efficient for predicting soil texture and organic matter; therefore
our spectral library contains information about soil properties (ii) soil min-
eralogy and particularly clay minerals are strongly linked to the bedrock
properties as well as to elevation. In contrast, soil organic matter is difficult
to interpret, showing reasonable correlation to vegetation coverage and slope
only for aromatic and alkyl groups. The method appears to be suitable to in-
vestigate soil-landscape relationships through Mid-Infrared spectroscopy and
without any prior laboratory analysis.
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Chapter 1

Introduction

1.1 Problem statment

Predicting and managing soil efficiently became of major importance during
the last decades (Hartemink and McBratney, 2008; Baveye, 2006). Soil is a
complex system whose processes and structure are still fully discussed (Rossel
and Chen, 2011). Historically, we base our understanding of soil system on
expert field knowledge, as well as time- and cost-expensive soil chemical and
physical laboratory analysis (Viscarra Rossel et al., 2006; Merry and Janik,
2001). The use of soil maps began to appear in the 1940s. They are based
on deterministic components from qualitative analysis of morphological pro-
cesses (Dalrymple and Conacher, 1968). Jenny et al. (1941) describes the
soil forming factors with the state equation S = f(cl, o, r, p, t) where cl =
climate, o = organisms, r = relief, p = parent material and t = time. These
factors have been largely used to delineate soil boundaries without spatial
correlation. Soil is classified into defined classes where this is assumed that
they are similar and with the hypothesis that their characteristics rely on the
environmental covariates that affect their formation (Beckett, 1978). How-
ever, the high soil spatial variability encourages soon in using stochastic
techniques with continuous soil attributes (Webster, 1977; Burgess and Web-
ster, 1980). Such maps describe the variation of soil properties from reliable
sampling and laboratory analysis. The goal being to extrapolate values to
an unknown location given the environmental factors. These techniques are
now commonly used but are highly variable given the sampling design and
the number of samples that can be gathered (Hengl et al., 2004; Brus et al.,

1



Chapter 1. Introduction

2011; Minasny and McBratney, 2006). However, these methods are limited
by the computing possibilities and by the expensive soil survey and chemical
analysis (McBratney et al., 2003). Over the last decades, the improvement of
technologies has partially filled the gap of cost and time-consuming soil data
retrieval (Jarmer et al., 2009). Behind the higher computing and technolog-
ical improvement, research focused on the estimation of soil properties from
“non-invasive” techniques such as remote (Yurui et al., 2008) or proximal
soil sensing (Viscarra Rossel et al., 2011). In this respect, the quantitative
estimation of soil properties from the Vis (400-700 nm), near-IR (700-2500
nm) and mid-IR (2500-25,000 nm) regions developed quickly (Ben-Dor and
Banin, 1995). They are rapid, accurate and cheap to estimate various soil
properties (related to organic or non-organic components) from a single scan
(Viscarra Rossel et al., 2006; Dunn et al., 2002). Determining soil charac-
teristics with the combined VIS-NIR-MIR usually provides better results in
comparison to the use of one particular region. In contrast to MIR, the use
of vis-NIR spectroscopy in soil science has been largely documented. From a
merely pragmatic perspective, the main differences between both techniques
rely on the accuracy of the soil models. While soil mid-IR models are usu-
ally more accurate, the sample preparation required by this technique can be
more complex than when vis-NIR is used. The mid-IR is however more accu-
rate and robust to estimate soil properties (Stenberg et al., 2010; Rossel and
Behrens, 2010). The reason behind the good performance of mid-IR in soil
modelling, relies on the fact that several fundamental molecular vibrations
occur in the mid-IR when only their overtones and combination are iden-
tified in the vis-NIR (Rossel and Behrens, 2010). Recent studies show the
importance of the coupled qualitative and quantitative analysis of the spec-
tral variability (Demattê et al., 2004; V̊agen et al., 2006; McBratney et al.,
2006; Shibusawa et al., 2003; Rossel and Chen, 2011; Viscarra Rossel et al.,
2011; Demattê et al., 2004). Particularly for MIR, the molecular bending
or stretching vibration at a precise wavelength allows diagnostics on the soil
components without any coupled chemical analysis. The information con-
tained in the MIR spectra has been studied by several authors for example
for the study of the specific carbon content in soil (Calderón et al., 2013)
or soil characteristics (Terhoeven-Urselmans et al., 2010; Reeves, 2012). De-
spite MIR has proven (to be) efficient in soil research, this technique is still
not operational specially in key fields of soil science where large amounts of
soil information is necessary (e.g. soil survey programs). For example, a
systematic integration of MIR spectroscopy in Digital Soil Mapping (DSM)

2



Chapter 1. Introduction

would result in better sampling designs, higher spatial and temporal reso-
lutions of the soil information, better mapping accuracies, and therefore a
better understanding of the soil processes in the landscape.

1.2 Objective and research questions

The major aim of this research is to investigate the information content of
a MIR soil spectroscopy by the prediction of soil properties and by studying
the relationships with terrain attributes. We conduct both quantitative (sta-
tistical modelling) and qualitative (wavelength analysis) to answer a number
of specific research questions as listed below:

• Is the information contained of our MIR spectral library enough to
predict soil properties with accuracy ? The general concept that dif-
fuse reflectance spectroscopy is suitable to derive soil properties is a
long established fact. However, the particular relationship existing be-
tween a given soil property and a spectral library is complex because it
varies with space, time, sampling design and accuracy of the spectrom-
eter, especially as in our case with a very heterogeneous study area.
The number of research articles on this question allows comparison,
although MIR spectroscopy is not the main spectral region used for
predicting soil components.

• Does the MIR spectrum have specific bands or regions “good predic-
tors” for a given soil property ? The NIR is generally difficult to inter-
pret because of overtones and band combinations when fundamental
molecular vibration occur in the MIR range. Thus, the estimation of
a target property, even in small quantity, should be the summary of
important wavelength that will represent most of its variability. The
identification of such bands would allow conducting future qualitative
interpretation of MIR spectroscopy.

• Are specific wavelengths free of overlap for a given soil property ? We
assume that a few band can represent most of the variability of a target
soil property. The aim is to know whether these specific bands are only
related to our soil property or if different soil properties overlap in the
same wavelengths. By a literature review on the target soil properties,

3



Chapter 1. Introduction

we will try to define the bands where the absorption is due to a unique
molecular vibration.

• Is it possible to use the spectra to highlight the relationships between
soil properties and terrain ? In agreement with the fact that our spec-
tral library contain soil information, and without any laboratory analy-
sis, can we extract the influence of the relief and parent material factors
on the soil formation ? Here, the goal is to derive information on the
soil-landscape relationships from the MIR spectra. What are the par-
ticularly terrain attributes that vary according to the soil property ?.

• Is it conceivable to use soil MIR spectroscopy for soil survey ? Consid-
ering no prior information, in which extent is the spectroscopy useful
to describe the soil-landscape relationships ?

1.3 Scope and layout of the thesis

The aim of this research is to link MIR spectroscopy and terrain modelling
for assessing the spatial variation of soils without prior knowledge of specific
soil properties which are of interest for soil surveys. This is known that to-
pography plays a key role on soil formation, characteristics and evolution.
But the link between infrared spectra and terrain remains widely unexplored.
We base our methodology on the assumption that spectra contain soil infor-
mation and thus the relationships between terrain and spectra can reveal
information about the soil-terrain interdependences. The idea behind would
be to go to an unknown study area, with no prior information about soil. By
taking soil samples, scanning them in the MIR range and linking them to
terrain derivatives, we obtain an overview of the influence of the terrain for
some given soil attributes. For DSM purpose, the gain of information would
be considerable, given that we could know if the terrain covariates are able
to correctly map a given soil property. This study tries to answer the specific
research questions in two steps. First, the study focuses in demonstrating the
use of MIR spectroscopy in soil description by modelling a set of soil prop-
erties. The second part of the study explores the relationships between soil
MIR data and terrain. In this respect, detailed terrain models of the spectral
responses of each wave number are calibrated. In this sense, we indirectly
investigate the terrain influence on the soil attributes. This has been seen as

4



Chapter 1. Introduction

Figure 1.1: Methodology for the study of the soil-terrain relationships

a new method to describe the soil-terrain relationships quickly and without
any prior information on the soil. This part is described in Figure 1.1.

5



Chapter 2

Research area

Figure 2.1: Study area of Upper Badong, background maps are provided by
Olson et al. (2001)

The research was conducted in the western Hubei province, central China,
in a catchment area which is located in the upper part of the city of Badong,
74 kilometres upstream the Three Gorges Dam on the Yangtze River (see

6



Chapter 2. Research area

Figure 2.1).The study area is 4.2km2 (3.2 km in the north-south and 1.8
km west-east) and centred on the geographical coordinates 31o1’24”N and
110o20’35”E.. The area was selected for the capability of correctly represent
the variability of the soil properties as well as its unique outlet for a relatively
small catchment that allows a better representativeness of the soil variability
with only a few samples.

Geologically, the area is rather homogeneous. Sedimentary rocks char-
acterize most of the area, mainly dolomite with silt and limestone formed
in the middle and lower Jurassic. The lower part contains fuchsia clayed
siltstone and clayey microcrystalline limestone formed in the middle Juras-
sic. The southern part exhibits grey microcrystalline dolomite and limestone
from the lower Jurassic (Jiang J., 2012). The upper Badong is topograph-
ically heterogeneous according to the elevations range between 469m to 1
483m above sea level and with an average of 1 053m. The majority of the
area is North oriented (72%) with a slope range from 0oC to 53oC with an
average of 26oC. The study area is covered by a subtropical monsoon cli-
mate with hot and humid summers and cool and dry winters. According
to the Köppen-Geiger climate schemes, Badong is classified as Cwa (Rubel
and Kottek, 2010). As reported by the China Meteorological Administration
(Hong-Yu, 2005), the mean annual temperature is 12.9oC and the annual
precipitation mean is 1067mm.

The area is mainly covered by woodland (81%), cropland (15%) and in-
frastructures (4%). The northern part contains most of the fields when the
southern part is almost entirely covered by forest. Woods are composed of
coniferous and leafy trees like oaks. Cropland contain soybean, corn and
cabbage with a seasonal crop rotation. Constructed area are mainly small
farm located in the northern part, with a few small pork industrial buildings
in the middle and upper area.

7



Chapter 3

Materials and methods

3.1 Multivariate statistics for the calibration

of MIR spectroscopy

3.1.1 Soil sampling and pre-treatment

3.1.1.1 Soil sampling

The samples were collected within the framework of the Germano-Sino Yangtze-
geo project, founded by the German Ministry of Education and Research.
Three field campaigns were organized. The first one in June 2013, the sec-
ond in May 2014 and the last one in November 2014. In total of 140 topsoil
samples (0-0.2m) were collected (0.5kg). Given the accessibility problems in
the area, most of the samples are collected from the lower part where the
landuse is characterized by fields. However, we produced a map containing
30 spatial strata in order to cover spatially the whole area. The idea, devel-
oped in Walvoort et al. (2010a), is to distribute sample points evenly over the
whole area. The stratification has been performed with the spcosa package
in R (Walvoort et al., 2010b).

3.1.1.2 Chemical analysis

All the 140 samples were submitted to conventional soil analysis for Sand,
Silt, Clay and SOM contents:
The samples were air dried in oven during 24 hours at 45oC and sieved with
a 2 millimetres filter. These first two steps were conducted at the Faculty of
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Chapter 3. Materials and methods
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Figure 3.1: Boxplot of Clay, Silt, Sand (a) and SOM (b)

Engineering of the University of Wuhan, China. All the other analysis were
then made at the laboratory of Soil Science and Geoecology at the University
of Tübingen, among which the milling to a size of 0.63µm. The Grain size was
known by using a combination of the sieve- and the pipette methods of the
sieved samples by DIN 19683-1 and DIN 19683-2 (Durner and Nieder, 2006).
The sieve method determines the distribution of the grain size by filtering the
samples through filters of 0.625mm, 0.200mm, 0.125mm, 65µm and 20µm,
from a coarser to a finer filter. Finer particles, which are cohesive, need a
moist sieving, we therefore employed the pipette method. This technique
is based on the relationship between particle grain size and the velocity in
which the particles sink into a fluid. With a sedimentation analysis, we can
estimate the size of the particle lower than 0.063 mm.
The Soil Organic Matter has been calculated by a function of the carbonate
(CaCO3) and the total carbon estimation. For CaCO3, the method used is
according to Scheibler. The Scheibler is based on the reaction of carbonates
into carbon dioxide using hydrochloric acid. The estimation is measured as
a function of the CO2 volume that is emitted from the reaction. In contrast,
we used a CNS Vario EL III device for the total carbon content estimation
in our soil sample.

The data extracted are given in Table 3.1 and drawn in Figure 3.1. The
distribution of silt seems to be skewed (Asymmetry = -0.86) which means
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that the probability of finding sand values is higher when looking to the
higher values. It can be compared to the three other distribution where SOM
and sand have positive values, the cumulative probability is more constant.
The kurtosis coefficient gives indication about the shape of the probability
distribution. High kurtosis value is often linked to low standard deviation.
For Clay, we get a negative value which means that most of the values are
near the centre of the probability distribution.

Cl
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ClLo SiClLo
SaClLo
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SiLoSaSa
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Figure 3.2: Soil texture with USDA classification in background

The soil textural triangle exhibits a soils mainly composed by silt soil
classes (USDA Soil classification). Most of the samples are classified as Silt-
clay-loam. The two others main classes are Silt-loam and Silty-clay. Silt soils
are generally the most fertile ones. They are composed of minerals like quartz
and fine organic particles. They retain large amount of moisture and improve
the drainage as the proportion of clay decreases. In the USDA classification,
the Silty-clay-loam soil is composed of 27 to 40% of clay and less than 20%
of sand.
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Soil Organic Matter Clay Silt Sand

Min 0.7 16.79 35.2 0.68
1stQu. 1.4 26.58 56.71 2.46
Median 1.8 30.99 63.07 3.19
Mean 2.17 31.27 61.06 7.66
3rdQu. 2.5 35.68 67.08 10.61
Max 7.4 51 76.28 43.88
SD* 1.28 7.86 8.51 8.65
Asymmetry 1.78 0.36 -0.86 1.69
Kurtosis 3.49 -0.34 0.33 2.16

Table 3.1: Descriptive statistics for soil texture and Soil Organic Matter

3.1.1.3 Optical measurement (spectral scanning)

Each samples were air dried, 2mm sieved and ball milled as for the labora-
tory experiments. Plants and stone are therefore excluded. The background
measurement is first measured with an empty sample compartment through
32 co-added repetitions. The soil sample is then placed into the sample cup
which is 0.5 cm in diameter and 0.5 cm in depth. A spatula was used to
smooth the surface of the cup and to provide a maximum light reflection and
a minimal signal to noise ratio (Mouazen et al., 2005). The scans were done
using an Fourier Transform Infrared (FTIR) Vertex 70 Spectrometer (Bruker,
Germany). This device is equipped with an air cooled IR source and ZnSe
optics for controlling air humidity. We used a MIR-KBr beamsplitter with a
spectral range of 7500-370cm−1. We scanned all the samples three times in
the MIR-range (570-5500cm−1) for absorbance with 64 co-added scans. The
background measurement were done every 3 samples or every ten minutes.
Three references samples were scanned every 4 hours to have a look to the
influence of the environmental factors like air humidity. After all the scans,
we calculated the Standard Deviation (SD) of the spectrum. The samples in
which the spectrum has SD higher than 1.5 were re-scanned. The result is
given in absorbance per unit with a spectral resolution of 1.4cm−1 in Figure
3.3.
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Figure 3.3: Scanned samples in the MIR range

3.1.2 Calibration methods

3.1.2.1 Partial least square regression (PLSR)

The dataset was split into calibration and validation sets by the k-means
sampling algorithm (80% and 20%)(Stevens and Ramirez-Lopez, 2013; Næs,
1987). The PLSR was used to calibrate MIR models that allow the prediction
of soil attributes from the MIR data. This multivariate regression method
aims to deal with many and correlated predictor variables and with only
a few observation (Mevik and Cederkvist, 2004). PLSR has been widely
used in applied sciences (Höskuldsson, 1988) and in chemistry (Martens and
Martens, 2001). The model aims to find a latent structure by projecting the
predicted variables and the observed variables to a new space (Tenenhaus,
1998). PLSR model first find new variables called latent variables ta(a =
1, 2, . . . , A), from a linear combination between the original variable xk with
the weight coefficients w∗

ka(a = 1, 2, . . . A),(Wold et al., 2001):

tia =
∑
k

W ∗
kaXik (3.1)

12



Chapter 3. Materials and methods

The predictor variables X are summarized by the loadings pak multiplied by
the scores tia with eik residuals:

Xik =
∑
a

tiapak + eik (3.2)

In the case of several Y , the matrix of the observed variables is estimated
like the last equation:

yim =
∑
a

uiacam + gim (3.3)

where uia are the Y -scores, cam are the weight and gim the residuals. The
X-scores are predictors for the observed values so we obtain:

yim =
∑
a

cmatia + fim (3.4)

Thus, the PLSR model is expressed as a multiple linear equation:

yim =
∑
a

cam
∑
k

w∗
kaxik + fim =

∑
k

bmkxik + fim (3.5)

The coefficient of regression for each predictor variable is denoted as bmk and
calculated as follow:

bmk =
∑
a

cmaw
∗
ka (3.6)

The PLSR model is validated using a Leave One Out (LOO) cross validation
technique. This method allows to understand how accurate the predictive
model will perform in practice. It can be run internally with the training
dataset which constructed the model or externally with new and indepen-
dent variables. For the training set validation, the LOOCV excludes one
observation and the model is recalculated with the other observations. The
cross validation fitted values are calculated as the difference between the pre-
dicted and the original observation and run as many time as the number of
observation in the dataset. The model is validated with an external dataset;
the square root of the prediction (RMSEP) and the coefficient of determina-
tion (R2) are calculated from the following equations (Mevik and Cederkvist,
2004)

R2 =

∑n
i=1(ŷi − ȳi)2∑n
i=1(yi − ȳi)2

(3.7)

RMSEP =

√
1

N

N∑
i=1

(ŷi − yi)2 (3.8)
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3.1.2.2 Cubist

For the calibration of the MIR spectra, we secondly used a rule-based regres-
sion model (Holmes et al., 1999) called Cubist (Minasny and McBratney,
2008). Cubist is based on a decision tree having a linear model at the leaf
nodes (Holmes et al., 1999). This is an enhancement of preliminary method
combining instance-based and model-based learning called M5 or model tree
(Quinlan, 1993b) and M5’ (Wang and Witten, 1997). Model tree is a tech-
nique that constructs a piecewise function. Instead of using discrete data at
the leaves of a decision tree, a linear model is used. As for the model tree,
M5’chooses factor that minimize the variation at each branch of the tree
rather than maximizing the information gain (Quinlan et al., 1992). The
target is to maximize the error reduction:

∆error = sd(T )−
∑
i

|Ti|
|T |
× sd(Ti) (3.9)

where T is the training dataset in which every potential test is computed
and Ti the number of T cases with i tests. After having computed every
combination, the model chooses the one that will minimize this error. In
the original model of decision tree, Breiman et al. (1984) uses the variance
of the absolute deviation to choose between the tests. The linear model
fitted at each leaf uses standard regression techniques simplified in order to
minimize the error. A smoothing procedure is determined by the variance
and the covariance between two sets of residuals (Kuhn and Johnson, 2013)
as follow:

PV (S) =
ni × PV (Si) + k +M(S)

ni + k
(3.10)

Where Si is the followed bran of the node S, ni is the number of training cases,
PV (Si) the predicted value at Si and M(S) the value given at S. A boosting
scheme called committees can also be implemented in the model tree (Kuhn
et al., 2012). The first tree is calculated using the procedure described above.
The outcome result is “analysed” by a sequence of test trees. If the values
is over-estimated by the model, the following value is adjusted downward to
compensate. The final value is an average of the smoothed value at each
node. The procedure, as described in Quinlan (1993a):

y∗(m) = y − (ŷ(m−1) − y (3.11)
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Figure 3.4: Performance of Cubist using the tuning parameters committees
and nearest neighbours. After Kuhn et al. (2012)

where ŷ is the predictive model.
At the end of the model, Cubist adjusts the prediction using nearest-neighbours
in the training set. With the predicted sample, cubist finds its nearest neigh-
bour and smooth with the surrounded values. Let ŷ be a new predicted
sample and wl be the weight of distance between the new sample ŷ and the
neighbours in the training set. For the model prediction t̂l and tl as observed
outcome for a training set neighbour we obtain:

1

N

K∑
l=1

[tl + (ŷ − t̂i)] (3.12)

Cubist method is becoming more and more employed in the calibration of
Vis-NIR and MIR spectroscopy (Miklos et al., 2010; Minasny et al., 2009)
because of its capability to deal with missing data or to handle non-linear
relationships. As for PLSR, the accuracy of the model is calculated with
RMSEP and R2, see equations (3.7) and (3.8).

3.1.2.3 Support vector machine (SVM)

Support Vector Machine (SVM) is a supervised machine learning method
used for classification and regression and first developed by Cortes and Vap-
nik (1995). This method uses the concept of “dimension superiority” (Li
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Figure 3.5: Linearly separable case for SVC. The hyperplane is expressed by
optimizing the margins

et al., 2009) to increase the information content of the database and separate
the data. SVM draws inseparable samples in a low dimensional space to a
higher dimensional space where a linear or a kernel hyperplane can solve the
separability problem. For linearly separable data, the question that arise is
about the best hyperplane to efficiently separate the data. Support Vector
Classification (SVC) introduces the concept of margin. The model selects
the best separator line so that it maximizes the margins to the nearest sam-
ples (Figure 3.5). The model locates the best line by maximizing (Ivanciuc,
2007):

2

||w||
(3.13)

with the constrain:
(wtxi + b)yi ≥ 1 (3.14)

where w is the normalized weight vector and b the bias for the hyperplane.
For non-linearly separable cases, two techniques are introduced:

• The soft margin technique proposes a penalizing factor C for the ob-
servations inside the margins of the hyperplane. The constrain is then
expressed as follow:

(wtxi + b)yi ≥ 1− ξ, ξ ≥ 0 for i = 1, 2, ..., N (3.15)
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where ξi is the variable measured to be away from the margins. The
construction of the hyperplane is then done with the above constrain
by minimizing:

1

2
||w||+ C

N∑
i

ξi (3.16)

Kernel methods can help to classify non-linearly separable data into a

Figure 3.6: Hyperplane transformation for (x, y, x2)

high dimensionality hyperplane. Kernel based methods map the input
space in a feature space by using the function ϕ(x) (see Figure 3.6).

• The kernel methods calculate the inner product in the original input
space and avoid therefore distortion due to the projection in a high
(or infinite) feature space. The following kernel based methods are
commonly used:
The linear kernel

K(xi, xj) = xi · xj (3.17)

The polynomial kernel

K(xi, xj) = (1 + xi · xj)2 (3.18)

The Gaussian Radial Basis Function kernal (RBF Kernel)

K(xi, xj) = exp

(
−||x− y||

2

2σ2

)
(3.19)
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The sigmoid kernel

K(xi, xj) = tanh axi · xi + b (3.20)

The SVMC can be extended to a regression problem (Vapnik and Vapnik,
1998) by using a ε-insensitive loss function (see Figure 3.7). SVR identifies

Figure 3.7: A radius ε is fitted to the data to maximize the margins

a function f(x) so that all the x have a maximum deviation ε from the value
y. SVR creates a model analogous to SVC by using soft-margins with the
introduction of slack variables ξ and where C control the penalty linked with
a deviation higher than ε.

3.2 Robust modelling of the spectra-terrain

relationships

3.2.1 Data preprocessing

3.2.1.1 Terrain parameters extraction

A Digital Elevation Model (DEM) with a spatial resolution of 25m was de-
rived from a topographic map using a 25” by 25” grid (ESRI, 2011). The
covariates were obtained by digital terrain analysis (Hutchinson, 1989) based
on the DEM. A total of 29 terrain attributes were derived by ArcGIS Desktop
10, SAGA GIS and the statistical software R (SAGA, 2013; R et al., 2012;
ESRI, 2011). Furthermore, a layer containing landuse information classi-
fied according to the Chinese landuse classification system (Liu et al., 2005;
Di Gregorio, 2005) were available, as well as a geological map. All layers were
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standardized to fit a spatial resolution of 25m. Description of the derived
terrain and references are summarized in Table 3.2.

3.2.1.2 Normalization of the terrain attributes

The 34 terrain attributes were imported in ArcMap 10.1 and the tool Extract
by points were used to obtain the terrain attributes values at each sample
location. The distribution of the values were analysed for normal distribu-
tion using Quantile-Quantile (QQ) plots. The QQ plots are used to check
whether the distribution of a dataset validates the distributional assumption
by computing a theoretical expected value for each data point and to check if
the points follow a straight line. In the case the statistical population of the
terrain attribute seems to follow a non-linear pattern, the dataset is trans-
formed to come as close as possible to a normal linear distribution y = x. We
used logarithmic y = log(x), mean y = mean(x), and exponential y = exp(x)
functions to correct non-linear datasets. After checking the assumption of
normal distribution, we checked the colinearity of the covariates. In order
to do this, a correlation matrix was computed. The terrain attributes with
a correlation higher than 0.8 were extracted and the colinearity was avoided
by deleting the terrain parameters with the lowest value of colinearity.

3.2.1.3 Mid-Infrared data pre-treatment

The acquisition of the MIR spectra is described in Part 3.1.1.3. Before to im-
plement the robust linear model, we tested different spatial transformations
for the spectra.

• Savitzky-Golay local polynomial regression (Savitzky and Golay, 1964);
item the 1st and the 2nd differentiation order with a polynomial order
p = 4 implemented in the R package prospectr (Stevens and Ramirez-
Lopez, 2013);

• coversion of the absorbed spectra to reflected spectra by using the func-
tion y = exp(−x);

• the Standard Normal Variate (SNV) -detrend to remove the scatter
effect of each spectra individually (Barnes et al., 1989);

• the Savitzky-Golay 1st differentiation order spectra.
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The best results for the robust linear modelling are found for the detrent
spectra.

3.2.2 Robust linear model

3.2.2.1 Basic concepts

Linear regression models provide a tool to summarize the relationships in the
data. These linear methods has been shown as extremely sensitive to minor
deviation in their assumptions (Huber, 2011). These assumptions, among
which linearity and additivity, statistical independence, homoscedasticity,
and normality may cause havoc in the model and lead to erroneous conclu-
sions. The normality assumption can be violated by the presence of outliers.
They can be object that have a different property or they can fake values pro-
duced by the data generation process (Filzmoser et al., 2009) which is likely in
terrain processing. Handling outliers in regression analysis may avoid distort
estimates. Robust methods can handle regression analysis with influential
cases. They are insensitive to small deviations from the assumption (Huber,
2011) and deal with a wide range of probability distributions including non-
normal. Robust methods fit the bulk of the data. If the dataset contains
only a few small outliers, the models gives approximately the same result as
a classical regression model. In contrast, in high-dimensional multivariate
situation with large outliers and when the typical regression model shows
erroneous results, the robust method provides reliable information (Maronna
et al., 2006). Robust methods have been first developed in the 1960s and in
the early 1970s with the work of Tukey (1960, 1962), Huber et al. (1964);
Huber (1967) and Hampel (1971, 1974). Since they have high computation-
ally requirements, robust statistics have experienced only recently a growth
of publication number.
Formulated by Mosteller and Tukey (1977) and reported in Andersen (2008),
the robust estimator satisfies two conditions: the robustness of validity refers
to the estimator that should have an optimal efficiency at the model and re-
flects the resistance of the estimator to outliers. In other words, the precision
should not be impacted by a change in the data. Robustness of efficiency
depicts the efficiency of the estimator under a wide range of circumstances.
The concepts underlying the robustness of an estimator can be defined as
follow:

• The breakdown-point defines the degree of robustness of an estimate
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with one or several outliers (Yohai, 1987). This concept has been first
introduced by Hampel (1971) and then developed by Donoho (1982)
and Donoho and Huber (1983). The breakdown-point (BDP) gives a
measure of the resistance of an estimator (Andersen, 2008) by providing
the largest amount of unusual observations that the data can contain
without damaging the estimate. Huber (1984) gives the maximum bias
that can be caused by outliers as follow:

bias(ε;T, Z) = sup |T (Z
′
)− T (Z)| (3.21)

where T = (t1. . . tn) is an estimator and T (Z) is its values at the sample
Z. We assume that all ε-corrupted samples are contained in Z

′
.In the

case of the number of ε samples infinitely grows in T , the estimator
“breaks down” and fails to fit the bulk of the data. The breakdown
point is more generally defined as:

BDP (T, Z) = inf(ε|bias(ε;T, Z) =∞) (3.22)

The breakdown point varies strongly between the estimators. The
dataset contains generally 10% of unusual observation that differ from
the volume of the data (Hampel et al., 1986) and suggests therefore
having a breakdown point of at least .1. However, several estimates
fail to have a high breakdown point, such the M-estimates introduced
by Huber (1984) with a BDP of 0 or the GM-estimates developed by
Yohai and Maronna (1979) which has a BDP which tends to 0. In re-
sponse to the low breakdown point of the M-estimator, the S-estimators
(Rousseeuw and Yohai, 1984) and the MM-estimators (Yohai, 1987)
were developed to implement a high breakdown point of 30-50% and
50% respectively. They are now the most commonly used methods and
are largely inspired by the M-estimation procedure as described is the
following parts.

• The measure of location is the measure of a position in the distribution
with a value . Common measures of location for a distribution are
the centre, the mean, the median and the interquartile mean. Linear
regression estimates a conditional mean of a dependant variable with
one or several predictors. The conditional mean is not robust and can
therefore be strongly influenced by a few outliers and misrepresent the
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real relationships between the data. The arithmetic mean is commonly
used in statistic to estimate the central tendency of the distribution
and denoted x̄.

x̄ =
x1 + x2 + x3 + ...+ xn

n
(3.23)

Considering the low resistance to the mean to outliers or extreme val-
ues, the mean is less efficient than many other measures of centre (An-
dersen, 2008). Hampel (1974) suggests to use a robust measure of
location rather than a two-step procedure consisting in removing the
outliers before calculating the mean. The trimmed mean is a robust
measure of the centre that discard parts of the samples, typically 10%
at the high and low end. It is calculated as follow:

x̄tk =
1

n− 2k

n−k∑
i=k+1

xi (3.24)

where k is the number of times that the trimmed-mean is computed,
n is the number of observation and xi is the ith arranged in increasing
order:

x1 ≤ x2 ≤ ... ≤ xn (3.25)

M-estimation are also commonly used to robustly estimate the loca-
tion (Huber, 2011). It includes various estimators based on the idea
of the maximum likelihood. Main robust regression estimates are de-
rived from this measure of location and scale such as M-estimates,
GM-estimates, S-estimates and MM-estimates. In the M- estimator,
the Maximum Likelihood is generalized. The M-estimator of location
µ for an assumed distribution Tn is the solution of the equation:

n∑
i=1

ψ

(
xi − µ
cs

)
= 0 (3.26)

where S is the measure of the scale with c as tuning constant and ψ is
the score function. M-estimate is differently estimated by using another
function that gives less weight to the outliers. The most popular are
the Huber weight and the biweight functions as shown in Figure 3.8.

• The measure of scale characterizes the spread or the variability of a
dataset. The idea, that is the same as the robust measure of location,
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Figure 3.8: M-estimator functions compared to the mean

is to give less weight to unusual observations when traditional measure
of scale are sensitive to outliers. The two common measure are first
the variance:

s2 =
N∑
i=1

(
Yi − Ȳ
N − 1

)2

(3.27)

where Ȳ is the mean of the data and s2 represent the arithmetic average
of the squared distance from the mean. The second is the standard
deviation that is the square root of the variance and defined as follow:

s =

√√√√ N∑
i=1

(
Yi − Ȳ
N − 1

)2

(3.28)

The standard deviation is particularly affected by outliers because it
calculates the squares of the deviations from the mean, which is also
strongly impacted by outliers. The outlier’s effects are amplified. To
avoid having distortions of the estimator, the Interquartile Range (IQR
or Qn) and the Median Absolute Deviation (MDA) are commonly used.
The MAD is defined as the median of the absolute deviations from the
median (Huber, 2011):

MADn = med{|xi −Mn|} (3.29)

with
Mn = med{xi} (3.30)

The MAD estimate of scale considers that most of the information is
in the tail of the data, therefore MAD exclude the lower and higher
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values of the median of the absolute deviations from the data median.
The estimate achieves high breakdown point, around .5. The IQR is
a measure of scale that have also high breakdown point: 50% of the
data are discounted which means that the estimate has a breakdown
point of .5. The difference between the .25 and the .75 range produce
he interquartile range:

QRq = y1−q − yq (3.31)

where
0 < q < .5 (3.32)

The SD, MDA and IQR are compared in Figure 3.9. The standard
deviation behaves inadequately and shows the impossibility to extract
information in presence of outliers. MAD shows better behave and the
dispersion of IQR is even lower. As for the measure of location, the M-

Figure 3.9: Bootstrap distribution of the Standard Deviation, the Median
Absolute Variance (MDA) and the Interquartile Range (Qn). Based on
Rousseeuw and Croux (1993). The image shows that SD can not be used as
measure of scale in presence of outliers.

estimation provides tools to handle outliers using maximum likelihood.
The M-estimator of scale is defined as the solution of the equation:

1

n

n∑
i=1

ρ

(
xi − µ̂0

σ

)
= κ (3.33)
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with
0 < κ < ρ(∞) (3.34)

3.2.2.2 The MM-estimator

In this study, we used a MM-estimator that “is perhaps now the most com-
monly employed robust regression technique” (Andersen, 2008). First pro-
posed by Yohai (1987), it combines high breakdown estimator of regression
(50%) with good efficiency. The “MM” has been chosen because the estima-
tor needs to compute multiple M-estimator procedures to carry out the com-
putation of the estimator. To reach the final estimates, the MM-estimator
makes use of the S-estimation for the high breakdown point (Rousseeuw and
Yohai, 1984) and the iteratively reweighted least squares (IRLS) with the
M-estimation as follow:
Stage 1: S-estimator is used to fit a highly resistant regression (BDP=50%)

with the coefficient β̃ and estimated residuals ri(β̃) = yi − xTi β̃
Stage 2: The residuals β̃ of the first estimated regression are used to compute
an M-estimate of scale with high BPD (50%) and denoted sn = s(r1β̃, ..., rnβ̃)
1. The chosen objective function (mainly Huber of biweight) is expressed as
ρ0.
Stage 3: The residuals β̃ from the first stage and the residuals scale sn in
the second stage are used to compute the MM-estimator as a solution of it-
eration weighted least squares of the M-estimator with a redescending score
function:

n∑
i=1

xijψ1

(
y1 − xTi β

sn

)
= 0 (3.35)

where ψ1(u) is the score function.The first two stages refer to the MM-
estimator’s high breakdown point when the third one is responsible of the
high efficiency (Stuart, 2011; Rousseeuw and Leroy, 2005).
The estimation of the probability for the results to be obtained when the
null hypothesis Ho is true is estimated by the p-value. We commonly use
the p-value to determine the evidence against Ho; the higher the evidence
against Ho, the smaller the the p-value (Wasserman, 2004). It is important
to determine the level at which Ho can be rejected, assuming that if the test

1Note that the function sn is here not given. Information in Stuart (2011) and Andersen
(2008)
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rejects at α, it will reject at level α
′
> α. Hence, the lower level at which Ho

is excluded is (Wasserman, 2004):

p− value = inf{α : T (X)n ∈ Rα} (3.36)

with a rejection region Rα for α ∈ (0, 1). The significance levels are classified
as follow:

p ≤ 0,01
0,01 < p ≤ 0,05
0,05 < p ≤ 0,1

p > 0,01

For interpretation purposes, the p-value can be accounted as the value at
which the observed results for a sample is considered as the results of the
relationships between the dependant variable and the independent variables.
The statistical measure of the goodness of the robust fit is typically done by
using a coefficient of determination (or R2 value), as for classical linear mod-
els. The R2 indicates the proportion of the total sum of squared explained
by the model as described in equation (3.7).

3.2.2.3 Terrain modelling of MIR variables

A model based on the set terrain attributes (L) was calibrated for each wave
band in the MIR region. The following equations summarize the concept
used:

A = adk=1 (3.37)

and
ak = f̂(L)k + εk (3.38)

where A represent the d spectral variables present in the MIR region, ak
represent the kth spectral variable, f̂(L)k is the calibrated function that
relates the terrain attributes to the kth spectral variable and εk is the error
of the kth model. This indicates that the final number of models is equal
to the number of spectral variables. Robust linear modelling was used for
calibrating the terrain models. These models were validated using leave-
group-out cross validation and the R2 values as well as the RMSE values were
obtained to assess their accuracy. In this respect, it was possible to construct
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the spectra of the obtained R2s, RMSEs and also the spectra of the p-values
(significance) of the terrain attributes along the different wavebands. We
selected to show in Figure 4.9 only six terrain attributes that were mainly
related to the spectra.
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Results and discussion

4.1 Predicting abilities of the mid-infrared spec-

tra

4.1.1 Performance

4.1.1.1 Partial least square regression (PLSR)

The information contained into the MIR data are described in the PLSR
model by the eigenvectors (see Figure 4.2). Each spectral band has an eigen-
value which can be interpreted to know what are the spectral region that
contribute to the prediction (Haaland and Thomas, 1988; Rossel and Chen,
2011). The bands with a positive eigenvalue will exhibit an absorption of en-
ergy (positive relationship) when a negative eigenvalue indicates a reflexion
(negative relationship).
Soil organic matter (Figure 4.1a) is positively correlated in its first princi-
pal component with the N-H stretch of amines near 3330cm−1, the C=O
bond of carboxylic acids at 1730cm−1 and the C-O stretching vibration of
polysaccharides at 1050cm−1. The third component shows a peak around
1510-1530cm−1 which could be likely assigned to the C=N and C=C stretch-
ing vibration of amides. In contrast, we observe negative relationships with
some sand minerals like quartz near 800 and 1789cm−1, with the Fe-OH bond
near 3530cm−1 corresponding to the glauconite and especially with the OH
stretching vibration of kaolinite at 3620cm−1.
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Figure 4.1: Loadings for the PLSR factors that represent the main spectral
variation caused by the absorption for Organic matter and clay. The positive
or negative significant peaks are linked to the supposed molecular vibration.
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Figure 4.2: Loadings for the PLSR factors that represent the main spectral
variation caused by the absorption for silt and sand. The positive or negative
significant peaks are linked to the supposed molecular vibration.
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Clay (Figure 4.1b) has not pronounced peaks in its 1st or 2nd principal
component, showing only pronounced positive peaks to the OH stretching vi-
bration of kaolinite at 3620cm−1, to the OH bond due to lattice minerals and
to the Al-OH bending vibration of kaolinite near 915cm−1 in the 3rd principal
component. The third loading has also positive values near 1100cm−1 with
the OH bending linked to the silicate structures. A strong negative corre-
lation is observed at 1415cm−1 with the CH2, corresponding to an organic
matter like alkyl.
Silt (Figure 4.2a), as well as for Clay, shows positive correlation in its third
component near bands that are primarily linked to the OH stretching vibra-
tion of kaolinite around 3620cm−1. A second peak is observed at 915cm−1

and might be due to alkyls or to carbonates and near 1100cm−1 with the OH
bending linked to the silicate structures. As well as clay, a negative loading
is detected at the bands near 1415cm−1 with the CH2. The loadings of the
silt prediction is extremely close to the loadings of the clay. It indicates that
the main contributors for their prediction are the same.
Sand (Figure 4.2b) shows heterogeneous eigenvalues, with strong positive
peaks in its first principal component as, surprisingly, at 1415cm−1 with the
CH2 stretching vibration of alkyls. The quartz appears to be strongly related
to sand with the SiO2 streching and bending vibration around 800cm−1. Neg-
ative peaks are also strong with the fe-OH at 3367cm−1, the N-H stretch at
3330cm−1, the C=O bond at 1730cm−1 and the C-O stretching vibration at
1050cm−1 corresponding respectively to aromatics, carboxylic acids and to
carbohydrates in SOM.

The prediction performance has been assessed by R2 and RMSE (see
3.1.2.1). We commonly define the R2 values for prediction of soil properties as
very good (>0.81), good (0.61-0.8), fair (0.41-0.6) and poor (<0.41), (Rossel
and McBratney, 2008). Table 4.1 shows the results for SOM, Clay Silt and
Sand with the internal validation dataset and the external validation of the
PLSR model.

The cross validation of the prediction shows generally good results for
SOM (R2=0.98) and for sand (R2=0.84). Good predictions are obtained for
Clay with a value of 0.73 and silt with 0.64. Due to the fact that organic
carbon is very well defined in the MIR region, the performance of the MIR
models to predict SOM is generally good. Furthermore, the results of the
external validation are extremely close to those referenced in Rossel and
McBratney (2008) computed from various authors between 1986 and 2006.
The R2 value for the independent validation is in our study of 0.93 for SOM,
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Soil property
Latent
variables

Training dataset
(n=111)

Independant validation
(n=28)

R2 RMSE R2 RMSE

SOM in % 14 0.98 0.21 0.93 0.26
Clay in % 8 0.73 4.00 0.73 3.94
Silt in % 7 0.64 4.98 0.82 3.83
Sand in % 10 0.84 3.56 0.80 2.86

Table 4.1: Results of the calibration with the PLSR model for organic mat-
ter, clay, silt and sand with the number of selected latent variables. The
latent variables are selected by cross-validation as implemented in Mevik
and Wehrens (2007).

very close to the R2 of 0.95 for the mean average prediction between 1986
and 2006. The R2 for clay is at 0.73 and 0.78 in the study, as close as for
sand with a R2 of 0.80 in comparison with the 0.84 in the paper. Excepted
for silt where the difference is high between our R2 and the study with an
R2 of 0.67. This is however close to the internal validation (R2=0.64).

The calibration was established using PLSR with all the sample and the
model was tested on the training and validation data set with the R2 and
the RMSE given in Table 4.1. In Figure 4.3d are drawn the corresponding
linear regressions between the observed (x-axis) and predicted values (y-axis)
for the external validation. As described before the relationship seems to be
clear, mainly for SOM and Clay. For Clay, Silt and Sand, it seems that a few
outliers account for most of the error, given the correct linear distribution of
the dataset.

The predicted values of SOM exhibit very good relationships with the
observed data that is due to the fundamental bands occurring in the MIR
range (Rossel and Behrens, 2010). Clay gives surprisingly low results in pre-
diction even if the MIR range is largely described as good predictor. For Silt,
the prediction corresponds to the results described in Rossel and McBratney
(2008) when sand has in our study are very high variability (See Table 3.1)
and is therefore difficult to estimate properly.
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Figure 4.3: External validation of the model PLSR for organic matter, clay,
silt and sand.
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Soil property Committees Neighbors
Training dataset
(n=111)

Independant validation
(n=28)

R2 RMSE R2 RMSE

SOM in % 50 0 0.95 0.30 0.91 0.31
Clay in % 10 0 0.73 4.10 0.74 3.90
Silt in % 50 5 0.74 4.27 0.73 4.77

Sand in % 10 5 0.78 4.22 0.88 2.28

Table 4.2: Results for the calibration using cubist model. The values for
Committees and Neighbors were selected according to the tuning function of
the cubist package in R (Kuhn et al., 2014)

4.1.1.2 Cubist

Table 4.2 shows the accuracy of the cubist model on the internal and external
validation sets. The model performs generally well for both validation and
prediction with R2 comprises between 0.73 and 0.91. As expected, we get the
best R2 for the internal and external validation of SOM with R2 = 0.95 and
R2 = 0.91. This is near the results found in Rossel and McBratney (2008) for
the calibration of C (total) with a MIR library (R2 = 0.95) and to the results
in Minasny and McBratney (2008) for the calibration of a MIR library with
cubist with R2 = 0.96. Surprisingly, the external validation shows also very
good results, with R2 = 0.91, that is higher than the two above reference
articles. For clay, we obtain lower results than expected for the validation
of the training set (R2 = 0.73, RMSE = 4.10) but good prediction of the
independent dataset (R2 = 0.74, RMSE = 3.90). For silt content, cubist
gives similar prediction than for clay with a R2 = 0.74 and R2 = 0.73 but
with higher dispersion of the residuals for the external validation (RMSE =
4.27 and RMSE = 4.77). Sand fraction is well predicted with cubist with an
external validation showing better R2 and RMSE than the internal validation
(R2 = 0.78, RMSE = 4.22 and R2 = 0.88, RMSE = 2.28).

A positive part of the cubist model is the facility of interpretation. A set
of rules is produced and allows us to have a look to the bands used to build
the prediction of the soil property. The model is built from rules that select
only a few bands for prediction. Using a model with only one rule — that
is, using conventional multiple linear regression analysis. When several rules
are decided, this means that the correlation tends to the non-linearity. An
example is given with the first rule for the prediction of soil organic matter:
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Model :
Rule 1 : [ 105 cases , mean 1 . 94 , range 0 .7 to 4 . 7 , e s t . e r r 0 . 2 6 ]

SOM = 3.56 + 140.84 X1542 .80535
+ 121.91 X1471 .45061
− 113 .09 X1479 .16463
− 49 .81 X1558 .23341
− 48 .16 X1560 .16191
− 48 .85 X1540 .87685
+ 46.52 X1577 .51847
− 31 .16 X813 .82982
+ 28.91 X815 .75833
− 18 .42 X1546 .66237
− 15 .29 X1457 .95106
− 8 .28 X860 .11399
− 7 .14 X1446 .38002
− 6 .35 X1322 .95559
+ 4.34 X742 .47508
+ 2.78 X1035 .60809

Where X refers to the value assigned to the waveband used for the model.
The bands used for the prediction of each soil property are visualized in
Figure 4.4. They are extracted from the sets of rules and allow finding the
wavelengths responsible of the estimation of a particular soil property.

Figure 4.4 shows the wavenumbers taken by cubist to construct the model
for SOM, clay, silt and sand. It can be compared to the PLS loadings for
interpretation purposes (see Figure 4.2). The wavelengths used for the pre-
diction of SOM are comprise between 870 and 1700cm−1 and correspond to
the general trend observed in Figure 4.10 in Part 4.2.2.1. Most of them are
comprise in the double bond region that is free of overlap for soil organics.
The bonds correspond for example at the C=N or C=C stretching bond of
amides around 1510-1530cm−1 or at the alkyls asymmetric-symmetric dou-
blet with the CH2 deformation near 1450cm−1. The wavelengths selected
for SOM are concentrated into main areas, but with a few other suitable
bands at 742cm−1, 860cm−1 and 1035cm−1 corresponding to the fingerprint
region. They might be attributed to the C-O stretch of polysaccharides that
are mainly predictable in this area (Skjemstad and Dalal, 1987). For the soil
texture, clay and silt seem to have a few close bands that are good predic-
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Figure 4.4: Bands ”good predictor” for soil organic matter, clay, silt and
sand. They are extracted from the set of rules used in cubist to build the
prediction.

tors. Around 1640cm−1, the peaks corresponding to the water are suitable
as well as between 1700 and 2050cm−1, corresponding to the quartz. Around
3620cm−1 most of the good predictors are found. These bands are linked
mainly to clay minerals. Kaolinite has an OH vibrational bond at 3620cm−1

and 3695cm−1. Smectite shows broad absorption bands between 3600 and
3800cm−1 due to the OH stretching vibration. For more description about
the correspondent wavelengths to each soil property, see Part 4.2.2.1.
Figure 4.5 represents the observed values plotted against the predicted ones

for the external validation. For clay and silt, the high RMSE and low R2 are
due to a few values that seem to influence the slope of the regression line. In
contrast, for sand the regression line fits the pattern of the bulk of the data
and is not influenced by the four extreme cases that fit approximately the
line. SOM is well predicted

4.1.1.3 Support vector machine (SVM)

The results for the calibration using the support vector machine model are
in Table 4.3. The model shows generally lower results than for the two other
methods. This was an expected result, given that Behrens and Scholten
(2006) described SVM as performing poorly comparing with other calibra-
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Figure 4.5: External validation of cubist for organic matter, clay, silt and
sand.
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Soil property Gamma Cost Epsilon
Training dataset
(n=111)

Independant validation
(n=28)

R2 RMSE R2 RMSE

SOM in % 0.001 1 0.1 0.89 0.59 0.85 0.53
Clay in % 0.00083 1 0.1 0.76 3.97 0.84 4.84
Silt in % 0.0015 1 0.1 0.74 4.50 0.89 5.38
Sand in % 0.00098 1 0.1 0.80 4.39 0.90 3.49

Table 4.3: Results for the calibration using SVM. The values for Gamma,
Cost and Epsilon were automatically selected according to the ksvm function
of the kernlab package in R (Karatzoglou et al., 2004).

tion methods. The results for the internal validation show the same trends
than for the other models. We get the better results for SOM, followed by
sand and then clay and silt. Especially, the cross validation for SOM gives an
R2 of 0.89 which is very low comparing to the other methods in this study.
For the external validation, the prediction of SOM is good (R2 = 0.72) but
outperform as well the other methods. However, the RMSE decreases slightly
comparing to the internal validation. For clay, the calibration gives good (R2

= 0.76) to fair (R2 = 0.66) results which could correspond to the large vari-
ability of the clay distribution. The RMSE is also high in comparison with
the other calibration. The SVM is poorly capable of clay prediction. For
silt, the internal validation shows good results (R2 = 0.74) but with a high
RMSE (RMSE = 4.5). The validation of the independent dataset shows an
extremely high RMSE of 5.38 even the R2 is comparable in term of goodness
to the other models. In comparison, sand has good possibilities of prediction
with SVM, given the good results for internal (R2 = 0.8, RMSE = 4.39) as
well as for external (R2 = 0.78, RMSE = 3.49) validation.

The plot of the external validation gives us information about the ability
of the model for further prediction. SOM have generally a homogeneous
distribution along the regression line. Only one value seems to have a large
deviation. The prediction performs well in this case. For clay, the regression
line fits the data, there is no observation with high deviation although they
seem to be scattered in three clusters. Silt contains only one observation that
should count for most of the RMSE. However, the regression line does not
seem to be affected by this value and performs well. Sand shows the same
distribution as for the internal validation. There is no data far away from
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Figure 4.6: External validation of SVM for organic matter, clay, silt and
sand.
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Figure 4.7: Comparison of the RMSE for the three calibration methods sep-
arately and for organic matter, clay, silt and sand.

the line; the slope of the regression line represents the trend.

4.1.2 Best model and comparison

4.1.2.1 Calibration methods performance

The results for all predicted target soil properties suggest that the best model
is clearly Partial least square regression followed by cubist and support vector
machine, Figure 4.7). However, we have high variability of the R2 and the
RMSE between the predicted soil property and also between the internal and
the external validation. Regarding this, cubist appears to outperform PLSR
and SVM according to the external validation. These results confirm Rossel
and Behrens (2010), when the calibration methods using selection feature
techniques outperform the methods using the full spectral range like SVM.
More in detail, we can see that PLSR and cubist produce similar performance
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for the prediction of SOM (R2 >0.9) for both internal and external valida-
tion. SVM gives the lower results for both RMSE and R2. It may be due
to the fact that SVM uses all the data for the data for the calibration when
cubist and PLSR allow respectively a band selection of the ”best predictor
wavelengths” (see Figure 4.4) and a ”weight” given by the loadings values
(see Figure 4.2). The variability between the internal and external validation
is not large, excepted for the SVM calibration. As we can see in Figure 4.1a,
SOM prediction is the result of band combinations with very strong positive
or negative loadings. When selecting all the values for the calibration, SVM
takes bands that can have negative correlation for a soil matter element and
a positive relation to another SOM element, although they both are included
in the soil organic category.
In contrast with the good prediction of the SOM, it appears difficult to val-
idate clay estimation independently. We find again the same trend than for
SOM prediction, with the best results given by PLSR, cubist and finally
SVM. The variability is however larger between the validation of the calibra-
tion and the independent validation, assuming a greater variability of the clay
content. We confirm this idea with the observation of the RMSE. In both
cases SVM appears to badly represent the heterogeneity of the observations.
The prediction of Silt gives also great variability between the internal and the
external validation. The PLSR model gives the best results for R2 as well as
for RMSE, excepted for the RMSE of the independent validation where cu-
bist outperform largely the two other models. It is apparent from this study
and those conducted by others (Calderón et al., 2011; Rossel and McBrat-
ney, 2008; Wetterlind et al., 2013) that a method with feature selection is
more suitable for predicting a target soil property with large variability. Es-
pecially in the MIR, a few bands represent most of the variability of the silt
and this is therefore inappropriate to use the full spectral range. As for Silt,
the prediction of sand reveals the efficiency of the band selection methods.
SVM gives the lower results with a high RMSE. Despite the variability of the
sand in our study area (see Figure 3.1), PLSR and cubist give good results
for both internal and external validation.

4.1.2.2 Interpretability

For both PLSR and cubist calibration models, we get the possibility to ex-
tract the wavelengths that are ”good predictor” for the target soil prop-
erty. In terms of interpretability, SOM is related to the wavelengths of N-H
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stretch of amines, the C=O bond of carboxylic acids and to the C-O stetch-
ing vibration of polysaccharides. the cubist model also gives us the bands
near 1600cm−1 as good predictors, they can be related to the C=N or C=C
stretching bond of amides as well as to the C-O stretch of polysaccharides for
the bands near 860cm−1. Clay is related to the wavelengths that represent
absorption due to the OH stretching and bond vibration of kaolinite and to
the OH bending of silicate structures. Generally, the clay minerals aborption
wavelength are suitable for the soil texture classes. This is confirmed with
the absorption bands of silt and sand that are mainly concentrated in the
region around 3600cm−1. Sand especially has absorption bands related to
quartz structures with the absorption bands of SiO2 stretching and bending
vibration.

4.2 Soil-terrain relationships through spectroscopy

4.2.1 Results

4.2.1.1 Precision

As stated in the methodology part, we compute for each spectral band along
the range between 5300cm−1 and 850cm−1 its relationship to the terrain
attributes. One part of the result is presented through the R2 (see Figure
4.8) that shows how close the terrain attributes are related to the spectra.
The R2 values spread between 0.02 (no correlation) and 0.51 (medium-good
correlation) along the spectral range. There are large variation with, for
example, a peak at 3620cm−1 followed by a low correlation at 3590cm−1.
However, the results are generally smoother in the range between 5300 and
2000cm−1 than between 2000 and 830cm−1 presenting high discontinuities.
The largest R2 corresponds to the peak at 3620cm−1 with a value of 0.51.
This shows good relationships in the prediction of the spectra in this spectral
band. A second peak corresponding to 4950cm−1 displays a R2 of 0.47 that is
a relatively good correlation. Two others high R2 have to be highlighted; the
first on at 900cm−1 with a R2 of 0.45 and the second at 3030 with a value of
0.43. They exhibit a relative good relationship between the spectra and the
terrain attributes. Other peaks with an inferior correlation are represented
in the graph. At 1075cm−1, the R2 is of 0.35 when at 1639cm−1 the R2

is 0.29. In the range between 4500 and 3700cm−1, the R2 value increases
relatively constantly from 0.24 to 0.34. Lower than 0.25, we assume that the
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Figure 4.8: R2 of the regression model between the terrain attributes and the
spectra for each band. The colours represent the bands where the correlation
is significant. This is to link with Figure 4.9.

R2 explains a too low quantity of the variance to be significant and are thus
not described here.

4.2.1.2 Significance

A second part of the results can be analysed through the P-value that is
related to the significance of each predictor in the model (see Figure 4.9).
We selected six representative terrain attributes (Elevation, LS-factor, Profile
curvature, Plan curvature, Land use and Geology) to explain the goodness
of the fit.
The P-value of the different terrain attributes spreads in the complete possi-

ble range, between 0 (significant influence of the parameter in the prediction)
and 1 (the significance of the parameter cannot be confirmed).
Elevation has, for most of the bands, a P-value higher than 0.05 (low levels
of significance). This terrain parameter exhibits however bands where the P-
value is lower than 0.05 among which a few bands between 900 and 1800cm−1,
at 900, 1100 and 1750cm−1; the bands between 3600 and 3750cm−1; the bands
between 4900 and 5050cm−1.
LS-factor produces a different combination, with no significant P-values in
the range between 850 and 3000cm−1. In contrast, a full range between 3600
and 4600cm−1 appears to be either slightly above the 0.05 limit, or slightly
underneath. Elevation has for these ranges very high values. Other bands
with a clear P-value under 0.05 are at 3000cm−1 and 3600cm−1.
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Profile curvature has only a few peaks corresponding to a P-value lower than
0.05. They are located at 750, 850 and 2500cm−1 and show that this terrain
covariate is in generally less significant than the other drawn parameters in
the prediction of the spectra.
Plan curvature shows the same characteristics as profile curvature given that
the terrain parameters has only a few wavelengths with a low P-value. These
wavelengths are located at 2350, 3030, 4300 and 4400cm−1.
Landuse exhibits generally low P-value, especially in the range between 2400
and 2750cm−1 as well as between 3050 and 3150cm−1 and 4100 and 4200cm−1.
The other significant band are positioned at 2150, 1250 and 800cm−1. Ge-
ology has generally good prediction abilities because of its low P-value for
large bands. All the bands comprises between 1870 and 2050cm−1, 2850 and
3300cm−1 , 2750 and 4700cm−1 and 4950 and 5350cm−1 have a significant
P-value. There is no P-value higher than 0.75 for the whole spectral range.
The others bands are at 750, 975, 1200, 1650, 2400-2480, 3150 and 4750cm−1.

4.2.1.3 Interelation

The aim of combining the R2 with the P-value is to highlight the param-
eters that affect the prediction for each spectral band. Thus, the good R2

values have to be put in association the P-value to show the ones that are
relevant. In Figure 4.9 and 4.8, the colours represent the four higher values
of R2 associated to the P-value of the terrain parameters. The black colour
represents the 4950cm−1 band with a R2 of 0.47. This band is linked to the
low P-value of the parameters elevation and geology and nearly to the pa-
rameter landuse. The yellow colour is associated to the 3620cm−1 band with
the higher R2 at 0.52. This R2 seems to be due to the elevation, LS-factor
and geology. We could also associate plan curvature because of its P-value
on the limit of 0.05. The red colour at 3030cm−1 is combined with a R2 of
0.43. The terrain parameters able of prediction in this spectral range are the
LS-factor, plan curvature and geology. Finally, the R2 of 0.45 at 900cm−1

is expressed by the green colour. In this case, only elevation can clearly be
significant for the prediction although profile curvature seems to have a low
P-value in the same range.
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4.2.2 Interpretation and discussion

4.2.2.1 Band assignement for Soil Organic Matter

Soil MIR spectra is well suited for analysis of soil organic matter (Stenberg
and Rossel, 2010). As described in Russell and Fraser (1994), the band
absorption in the MIR region can be divided between the fingerprint, the
double-bond, the triple-bond and the X-H stretch regions depending on the
fundamental molecular vibration of the soil properties. Thus, we can assign
bands to the R2 in order to analyse what kind of soil properties are better
detected than others. This analyse in based on a literature review.
In the fingerprint region, band near 1075cm−1 may be attributed to CO
stretching vibrations of carboxylic acids in SOM (Simonescu, 2012). The
Polysaccharides are almost exclusively detectable in this region due to the
C-O stretch at 1050cm−1 (Skjemstad and Dalal, 1987; Haberhauer and Gerz-
abek, 1999), 1160cm−1 (Calderón et al., 2011) and 1170cm−1 (Rossel and
Behrens, 2010). Badly predicted, the vibrational bond of carbohydrates at
1050cm−1 (Rossel and Behrens, 2010) and 1051cm−1 (Janik et al., 2007) are
created by the CO and -COH stretch, respectively. A large absorption at
around 1075cm−1 may be caused by the CO stretching bond of alcohols (Si-
monescu, 2012).
The double-bond region is particularly suited for soil organic group detec-
tions. Although the R2 shows generally low values, many groups in SOM
are due to fundamental vibrations in this region. Aromatics –CH exhibits a
plane deformation at 1238cm−1 (Janik et al., 2007) as well as at 1930cm−1

(Haberhauer and Gerzabek, 1999) corresponding to the C=O stretch and in
the region comprises between 1587 and 1639cm−1 (Ziechmann, 1964) for the
-C=C- stretch. The bands near 1404cm−1 and 1610cm−1 are associated with
the N-H bending of Amines (Rossel and Behrens, 2010; Simonescu, 2012).
The alkyls assymetric-symmetric doublet with the CH2 deformation are mainly
concentrated in the bands between 1400 and 1450cm−1 (Janik et al., 2007),
but also at 1530 and 1639cm−1 (Skjemstad and Dalal, 1987) due to the C=N
and C=O stretch.
C=O carboxylic acids has characteristic bands near 1730cm−1 (Rossel and
Behrens, 2010; Haberhauer and Gerzabek, 1999), 1708cm−1 (Janik et al.,
2007) according to the -COOH stretch band at 1629cm−1 (Simonescu, 2012)
due to the C=O stretching bond. Major peaks or R2 are present in the bands
related to the amides. Near 1640cm−1, C=O stretch band combination of
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amides (Rossel and Behrens, 2010; Skjemstad and Dalal, 1987) are correlated
with a high R2. Around 1510-1530cm−1, the bands can be likely assigned
to the C=N and C=C stretching bands of amides (Haberhauer and Gerz-
abek, 1999) as well as at 1640cm−1 (Rossel and Behrens, 2010), 1929cm−1

(Simonescu, 2012) and 1660cm−1 (Janik et al., 2007). Aliphatic-CH stretch
are detectable at 1465cm−1 and 1350cm−1 (Baes and Bloom, 1989; Rossel
and Behrens, 2010). The absorption bands between 1350 and 1445cm−1

are most likely due to methyl (Rossel and Behrens, 2010) when ether at
1260cm−1 (Ziechmann, 1964) may be attributed to the COC stretching vi-
brations. The phenolic group is assigned to the bands near 1275cm−1 (Baes
and Bloom, 1989) because of the C-O stretch and at 1581, 1393, 1223cm−1

(Janik et al., 2007) by the C=C skeletal vibrations. It has also to be noted
the weak absorption band of the carboxylate anion near 1393cm−1 (Janik
et al., 2007). The triple-bond region is not very useful for the detection of
organic matter. The carbohydrate groups are however notable, with a –COH
stretch in the bands between 2000 and 2200cm−1 (Janik et al., 2007).
Many bands in the X-H stretch regions are assigned to SOM. The broad
band near 3030cm−1 may be attributed to the C-H aromatics (Rossel and
Behrens, 2010) when amine has N-H stretch vibrations near 3330cm−1 (Rossel
and Behrens, 2010). The region between 2850 and 2930cm−1 are useful for
the detection of Alkyl asymmetric-symmetric doublet (Stenberg et al., 2010)
given that they are free of overlaps from other vibrations. They are linked
to the CH2-alkyls for 2853 and 2922cm−1 (Stenberg and Rossel, 2010; Janik
et al., 2007) and at the C-H stretching at 2850 and 2930cm−1 (Rossel and
Behrens, 2010). Alcohols with the –OH bonded phenol is predictable near
3333cm−1 (Ziechmann, 1964).
Finally, a small range of the NIR spectra is present. It corresponds to the
combination and the first overtone. These bands are useful at 4950cm−1 for
the prediction of amides and at 5050cm−1 for phenolic (Viscarra Rossel et al.,
2006).

4.2.2.2 Band assignement for soil mineralogy

The MIR spectra is also suitable for the prediction of soil mineralogy and
water. As for Figure 4.10, Figure 4.11 highlights the band assignment for
minerals and free water. In contrast to SOM, most of the useful bands of
mineral groups are concentrated in the X-H stretch and fingerprint regions
although the double bond (DB) appears to be good predictor, but with a lot
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of overlap with other soil properties.
In contrast with SOM, many absorption bands of minerals are present in the
Fingerprint region. The bands at 915cm−1 (Rossel and Behrens, 2010) and
1150cm−1 (Russell and Fraser, 1994) are particularly suitable for the detec-
tion of kaolinite with the Al-Oh bending vibrations also studied in Nguyen
et al. (1991) with the bands near 920 and 1019cm−1. Smectite exhibits a
few peaks at 840cm−1 (Russell and Fraser, 1994), 885cm−1 and 915cm−1

(Rossel and Behrens, 2010), due to the vibration of alFe-OH bond. For the
same molecular bond, illite has absorption bands between 825 and 890cm−1

(Russell and Fraser, 1994). Bands near 800 and 1080cm−1 are due to the
fundamental SiO2 stretching and bending vibrations of quartz (Russell and
Fraser, 1994; Chukanov, 2013; Madejová and Komadel, 2001). Si-O stretch-
ing or bending OH at 1100cm−1 (Calderón et al., 2011) is suitable to detect
silicate structures as well as Serpentine minerals such chrysotile and antig-
orite near 1000cm−1 (Russell and Fraser, 1994). Olivine-group minerals have
absorption bands near 1000cm−1 (Russell and Fraser, 1994; Chukanov, 2013).
Carbonates have a weak absorption band at 878cm−1 (Russell and Fraser,
1994).
The double-bond (DB) region is rather difficult to interpret for clay miner-
als. Minerals like kaolinite have a broad vibrational bond between 1700 and
2000cm−1 (Stenberg et al., 2010), that is also the absorption band for several
organic matter (see part 4.2.2.1). Carbonates CO−2

3 have is characteristic of
the band near 1415cm−1 (Rossel and Behrens, 2010) when calcite is typical
of the band at 1428cm−1 (Chukanov, 2013; Madejová and Komadel, 2001).
Bentonite can have a weak combination band at 1260cm−1 (Calderón et al.,
2011). In contrast with clay minerals, quartz mineral are characteristic of the
double-bond bands with absorption feature at 1789, 1869, 2000cm−1 (Nguyen
et al., 1991) and between 1700 and 2000cm−1 (Stenberg et al., 2010). Ab-
sorption bands for silicates are detectable at 2000 and 1790cm−1 (Haberhauer
and Gerzabek, 1999).
The triple-bond region has not mineral absorption bands specific to miner-
als. The presence of minerals instead of organic matter can be confirmed
by a view on the continuum-removed spectra (Figure 4.12) that exhibits low
reflectance values, especially near 915, 1100, 1400 and 1650cm−1.
The X-H stretch region highlights the presence of kaolinite with the OH vi-
brational bond at 3620cm−1 (Rossel and Behrens, 2010; Russell and Fraser,
1994), 3695cm−1 (Rossel and Behrens, 2010) and 3700cm−1 (Russell and
Fraser, 1994; Chukanov, 2013; Madejová and Komadel, 2001). Another clay
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mineral closely linked to the high R2 is the smectite with its absorption bands
between 3600 and 3800cm−1 (Stenberg et al., 2010) by the OH stretching vi-
brations and more specifically at 3620cm−1 (Rossel and Behrens, 2010) and
3622cm−1 (Russell and Fraser, 1994). Both kaolinite and smectite have close
vibrational OH bonds but its broader absorption bands (Stenberg et al.,
2010) can distinguish smectite. The low value in the Figure 4.12 around
3600cm−1 attests to the high mineral absorption of clay minerals in this
region of the spectra. Illite is also largely represented in the X-H stretch
region with the OH bond at 3620cm−1 (Rossel and Behrens, 2010) that can
be coupled with 3625cm−1 (Stenberg et al., 2010) or like smectite between
3600 and 3800cm−1 with the OH stretching vibrations. Carbonates have
typical absorption bands at 2515 and 2590cm−1(Stenberg and Rossel, 2010)
when the bentonite vibrational bond overlaps kaolinite, smectite and illite at
3622cm−1 (Calderón et al., 2011). Glauconite shows a weak absorption at
band 3534cm−1and 3578cm−1 (Russell and Fraser, 1994) due to the Fe-OH
bond. Absorptions near 3367cm−1 shows the presence of olivine-group min-
eral by the OH stretching band.
The NIR range combination can help to differentiate between the elements
avoiding overlapping into the clay minerals. Kaolinite exhibits an Al-OH
bend plus O-H stretch at 4545cm−1 near to the metal O-H bend of smectite
at 4347cm−1and to the O-H stretch of illite at 4347cm−1 (Viscarra Rossel
et al., 2006). Carbonates have a broad absorption region between 4000 and
4347cm−1 and two typical bands at 4629 and 5405cm−1 (Hunt, 1970).

Water has specific absorption bands in the double-bond (DB) region at
1645cm−1 (Rossel and Behrens, 2010) with the HOH vibrational bond and
in the X-H stretch region the OH stretch at 3278 and 3484cm−1 (Rossel and
Chen, 2011). Note the OH bond in the combination region of the NIR range
at 4545 and 5128cm−1 (Viscarra Rossel et al., 2006).

4.2.2.3 Influence attributes on soil composition

The relationships between terrain and soil property is hard to define with
accuracy. This link is often unknown and very noisy, (Moore et al., 1993;
Zhang et al., 2012) because soil properties is the results of many environmen-
tal factors as described in Jenny et al. (1941) and McBratney et al. (2003).
Terrain for prediction of soil organic matter or soil mineral gives generally
bad results. The distribution characteristics have been studied as an in-
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Figure 4.12: Continuum Removal of the reflected spectra in order to highlight
the mineral absorption.

fluence of a coupled effects on terrain, soil texture and soil genetics types
(Zhang et al., 2012). Around 5000cm−1, SOM through amides and phenolic
seem to be explained by elevation, geology and to a lesser extent by landuse.
Phenolic in soil in commonly linked to decomposing plant litter. The decom-
position of dead plant materials conducts the oxidation of the humus matter
and the transformation into less complex forms. In this case, landuse is fully
linked to the phenol in soil by the release of organic materials and by the
change in the humus degradation rate. The link between elevation and phe-
nol is largely unexplored and remains unclear. It could be explain indirectly
ba the underlying change in solar irradiation of by soil particles movement.
Spielvogel et al. (2007) gives some explanation about it when he highlighted
the link between grain size and phenols. Phenols bind to clay minerals and
therefore coarser grain could explain the variability of this element. In our
specific study area, geology is linked to elevation (geological layers correlated
with altitude). It has been also widely studied the impact of the bedrock
properties on the grain size distribution Kiem and Kögel-Knabner (2003). It
seems that phenol can be predicted by elevation and geology by the latent
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factor of grain size distribution. Amides are derived from microbial proteins,
suggesting that the litter is rapidly transformed by soil fauna (Whalen and
Sampedro, 2010). Landuse as a main role on it, but we are limited by the
resolution of this terrain derivative. An important part of the amide con-
centration in the soil is due to the amount of residues from plants and the
velocity of the decomposition. In our catchment area, shrubs and abandoned
terraces are increasing with altitude and could explain the role of elevation as
good predictor for amides. However, the link with geology is not clear. Might
be with the underlying grain size because amides have physical protection
within micro aggregates due to clay minerals (Whalen and Sampedro, 2010).
Around 3030cm−1 aromatics and alkyls are as main predictor the LS-factor,
plan curvature, landuse and geology. Aromatics and alkyls are, in contrast
with phenolic and amides, linked to substrates for a large number of phungi
and bacteria, and not directly linked to soil microbial activity and plant
litterfall quantity. Vegetation type seems to have the main influence on
the aromatic and alkyl occurrence, given that this factor drives soil respira-
tion (Sjögersten and Wookey, 2004). Geology also have a main role by the
underlying grain size distribution. Aromatic and alkyls have relationships
with clay particles. Clay minerals by association with organic C can slow
the degradation by protection from decomposition. The relation between
slope properties of the LS-factor and the plan curvature in association with
alkyls and aromatics are not clearly defined. The slope properties have influ-
ences on the topsoil, among which the soil erosion by water. Organic matter
is largely impacted by accumulation and deposition of topsoil organic sub-
stances (Berhe, 2012) and lead to soil aggregates that can contain a higher
rate of alkyls and aromatics comparing to the total soil organic carbon value.
There is a potential biological protection of organic C by with the fine grain
size elements (mainly clay) that are moved with the downslope movement
of organic-rich clay (Huang et al., 2011). Soil minerals are generally well
linked to the terrain attribute such as elevation, LS-factor and geology. At
around 3600cm−1, clay minerals are represented through kaolinite, smectite
and illite. Kaolinite can be found in most soil into the clay fraction. It is
the result of a highly weathered soil even the mineral is itself very resistant
to chemical degradation. Therefore, it is found in high quantity and it is
easily detectable with infrared spectroscopy. Smectite refers to soil that can
be expansible due to the high capacity of water retention of the mineral. Soil
with high smectite content can expend until 30%. Illite are the result of the
decomposition of the micas and feldspars (composition of granite). The cor-
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relation of these terrain attributes with these clay minerals is in agreement
with the soil particle redistribution and the erosion-deposition processes de-
veloped in Brady and Weil (2010). Kaolinite, smectite and illite are moved
downward according to the movement of water. This is why they are linked
in a clear way to the slope properties of the ls-factor and to the elevation. For
bands near 915cm−1, elevation and geology have the largest influence. These
bands correspond to kaolinite ad smectite. Their interrelation are interpreted
above.
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Conclusion

In this thesis we have argued that the MIR range of a soil spectra con-
tains enough information to be used for describing soil-terrain relationships
quickly. The results bring us to the following conclusions:

There is high correlation between soil and spectra. This has been high-
lighted with multivariate statistics and the wavelengths corresponding to the
main soil elements were extracted. Notably, we note that the bands ”good
predictors” for soil organic matter and soil mineralogy are clearly linked to
specific spectral range. The facilities of interpretation offered by the models
brought us to the conclusion that the spectra contains all the information
needed for soil monitoring.
The MIR range, when linked to topographic secondary information, is an
useful tool for describing the influence of terrain on the soil. MIR gives reli-
able view on the soil formation and evolution factors. In particular, we can
understand in which proportion the terrain analysis is suitable to explain the
spatial distribution of soil organic matter or soil mineralogy.

Our results support earlier works analyzing the possibility of soil spec-
troscopy for describing the spatial variability of the soil. The main advantages
of Vis-NIR and MIR spectroscopy are (i) the relative cheap measurements
comparing to conventional laboratory analysis (ii) the possibility to measure
directly in the field and therefore avoiding to carry the samples and (iii) the
specific-wavelength absorption gives us information about soil composition.
The development of techniques to derive soil maps from the spectra itself
would decrease significantly the costs related the classical soil surveys. Espe-
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cially in our study area, we show that the spectra is a powerful tool to gather
information about soil characteristics without any prior study and with lack
of information.

This study has been limited by the lack of auxiliary information such as
high resolution climate data that we could have incorporated. In the same
way, the resolution of digital elevation model have a direct impact on the
results. We could therefore include higher resolution dem, landcover and ge-
ological covariates and improve significantly the model. The size of the study
area (4.2km2) also brings some limitations concerning the use of remote sens-
ing data. Notably, hyperspectral images were not present in this region and
we did therefore not used them. Another limit is that there is not spatial
link between the observations. We implemented a robust linear model that
does not take into consideration the spatial distribution of the samples.

Future projection of this work would involved combining not only topo-
graphic related covariates, but all the parameters of the famous equation
described in Jenny et al. (1941). It would include bedrock properties, cli-
mate, temporal change and all the environmental covariates that affect soil
variability. This should therefore be conducted in a larger study area in order
to reduce the error affected to the DEM and to climate information. The use
of remote sensing as auxiliary source of data has to be considered. Another
possibility to improve the evaluation would be use a model that takes into
account the spatial distribution of the samples. Particularly, when introduc-
ing all this characteristics into a new model, we can expect to get results
that will allow a spatial prediction of a spectra. This could modify the use
of traditional soil analysis and allow high resolution mapping in area with
few soil information. Especially, the launch of new hyperspectral sensors
such as HYMAP would support enhancement, comparison or validation of
the prediction.
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Bivand, R. S., Pebesma, E. J., and Gómez-Rubio, V. (2008). Applied spatial
data analysis with R, volume 747248717. Springer.

Brady, N. C. and Weil, R. R. (2010). Elements of the nature and properties
of soils. Pearson Educational International Upper Saddle River, NJ.

58



Bibliography

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classifi-
cation and regression trees. CRC press.

Brus, D., Kempen, B., and Heuvelink, G. (2011). Sampling for validation of
digital soil maps. European Journal of Soil Science, 62(3):394–407.

Burgess, T. and Webster, R. (1980). Optimal interpolation and isarithmic
mapping of soil properties. Journal of Soil Science, 31(2):333–341.

Burrough, P. A., McDonnell, R., Burrough, P. A., and McDonnell, R. (1998).
Principles of geographical information systems, volume 333. Oxford uni-
versity press Oxford.

Calderón, F., Haddix, M., Conant, R., Magrini-Bair, K., and Paul, E.
(2013). Diffuse-reflectance fourier-transform mid-infrared spectroscopy as
a method of characterizing changes in soil organic matter. Soil Science
Society of America Journal, 77(5):1591–1600.

Calderón, F. J., Mikha, M. M., Vigil, M. F., Nielsen, D. C., Benjamin,
J. G., and Reeves III, J. B. (2011). Diffuse-reflectance mid-infrared spectral
properties of soils under alternative crop rotations in a semi-arid climate.
Communications in soil science and plant analysis, 42(17):2143–2159.

Chukanov, N. V. (2013). Infrared spectra of mineral species: extended library.
Springer Science & Business Media.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learn-
ing, 20(3):273–297.

Dalrymple, J., L. R. and Conacher, A. (1968). A hypothetical nine unit
landsurface form. Zeitschrift fur Geomorphologie, 12:60–76.
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