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Abstract
Digital convergence is helping us to better understand and study the soil. Fixed and

mobile sensors, and wireless communication systems aided by the internet produce

cheap and abundant streams of digital soil data that can readily be used for model-

ing and information generation. Here, we explore the ways in which digital science

and technology have affected soil science. We can call this digital soil science and

define it as the study of the soil aided by the tools of the digital convergence. To some

degree, all of our research and teaching had been enabled, enhanced, and expanded

by the digital convergence. We outline how soil science has changed using illustra-

tions of intellectual and technical developments enabled digitally. Digital soil sensors

have been widely implemented, and new tools such as cell phones and applications,

or metagenomics techniques are becoming available. There are also areas in soil sci-

ence for which no major obstacles in the digital technologies exist, but which have

not been thoroughly investigated—for example, to devise a truly digital soil field

description or for building a formal digital quantitative system of soil classification.

The soil science community will need to be alert to some of the dangers brought by

digital convergence such as the lack of new theory and proprietary (black-box) soil

prediction. Finally, we discuss a whole set of digital tools that will, or might, gain

the stage in the immediate future and take a stab in the dark on what may lie over the

horizon of digital soil science.

1 INTRODUCTION

Stepping back in time 45 years, in 1976, a young scientist col-

lected soil data from 101 soil profiles on a 2-km-long transect

at Tillycorthie near Aberdeen, Scotland. The analysis of soil

variation presented in McBratney and Webster (1981) using

techniques of data transformation, principal component anal-

ysis, and computation of the sample variogram required a per-

sonal computer and about 0.1 MB of computer storage. While

quite unremarkable for the present-day soil scientist, the use of

Abbreviations: IoT, Internet of Things; ISRIC, International Soil

Reference and Information Centre; LIDAR, light detection and ranging;

NCBI, National Center for Biotechnology Information; NGS,

next-generation sequencing; PCR, polymerase chain reaction; vis-NIR,

visible–near-infrared; WRB, World Reference Base.
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digital computer technologies in 1981 was already a long way

from other tools such as punched cards, a pre-electronic digi-

tal data storing and handling tool widely used by soil scientists

(e.g., by Beckett et al., 1972). A few years before the study

of McBratney and Webster (1981), the punched cards were

themselves an improvement in comparison with analog data

such as aerial photographs used for soil and land evaluation by

Buringh (1954) or Webster and Beckett (1970), among oth-

ers. Fast forward to the present day, scientists have embraced

and nurtured the digital environment, made from binary ones

and zeros instead of analog data that required human inter-

pretation. One makes digital maps of the world using large

(>10 Gb) electronic digital soil databases of hundred of

thousands of soil profiles. These soil data are acquired rapidly

by digital sensors and instruments. Data analysis is enabled
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by computers, digital imagery, and cloud processing. Today’s

digital data generation, storing, processing, and visualization

has been brought to a level that was unimaginable just 45 years

ago.

1.1 What “digital” means

The Oxford English Dictionary defines digital as “relating

to numerical digits and (later) their use in representing data

in computing and electronics.” Etymologically, digital comes

from the Latin word digitus, which in Roman languages such

as French refers to the finger. In Germanic languages such

as English, the word digital is used in the sense of numer-

ical: an encoded representation based on a finite set of dis-

crete elements (Strasser & Edwards, 2017). As such, there is

no divide before and after the advent of computer technolo-

gies because soil data need not be in electronic format to be

digital; any record as numbers or text in articles and books

were already digital before becoming electronic. The major

innovation of these recent years came from analog-to-digital

conversion. Imagery, maps, reading from spectrometers and

sensors, and drawings had to be transformed to a digital rep-

resentation, which, with the emerging resources in computing,

enable data comparison, analysis, processing, and sharing.

This analog-to-digital conversion is not finished. At the time

of the writing, several institutions in the world, such as the

Institut de Recherche pour le Développement in France, the

ESDAC (European Soil Data Center) in Italy, or International

Soil Reference and Information Centre (ISRIC)—World Soil

Information in the Netherlands are still digitizing hand-drawn

soil maps (Figure 1) and their collection of analog soil data.

1.2 Getting more information more cheaply

Besides the analog-to-digital conversion, sensors and instru-

ments generating digital data have gradually replaced ana-

log instruments which require human reading. The standard

tensiometer measuring soil moisture content with a vacuum

gauge has an analog display, whereas more recent ones have

digital outputs and can be read by cell phone apps and comput-

ers. Instruments producing analog outputs are equipped with

an accessory to instantly digitize the record. For example,

recent soil spectrometers have embedded analog-to-digital

converters to translate the measuring signals emitted by the

detector into a number of discrete elements readable by a

computer. Thus, one of the main features of this analog-to-

digital conversion is the opportunity to produce more data

more cheaply, which can readily be used by computers and

information technologies. The digital convergence has con-

tinued with the internet, and more recently with the devel-

opment of new tools to handle and process large amount of

electronic data. Digital soil science is, by a semantic shift, the

Core Ideas
∙ Many aspects of soil science have been strength-

ened by the digital convergence.

∙ We outline how soil science has changed with the

digital.

∙ The dangers and immediate future of digital soil

science are discussed.

∙ Scenarios on the far future of digital soil science

are proposed.

study of the soil aided by the tools of the digital convergence.

How the technologies have facilitated advances in soil sci-

ence and pedometrics is discussed in Rossiter (2018) and how

the scientific methods have evolved with the recent techno-

logical change is reviewed by Wadoux, Román-Dobarco,and

McBratney (2021).

1.3 Chronology

The major events of the digital convergence in soil science—

namely, convergence of digital data, electronic databases

stored in computers, the internet, and new tools to handle

F I G U R E 1 Digitization of a legacy soil map at International Soil

Reference and Information Centre (ISRIC)—World Soil Information in

the Netherlands in 2021. The operator places the soil map in a

high-resolution scanner. A digital copy of the map is then rendered in

the computer and manually georeferenced. The map is stored in a raster

graphic format, which enable computer processing and manipulation in

a geographic information system (e.g., to recreate mapping units).

Picture courtesy of ISRIC—World Soil Information
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F I G U R E 2 Simplified chronology of the major events of the digital convergence in soil science

and process large amount of electronic data—have followed

the developments of the digital revolution in other sciences

and in society. We outline a brief chronology of the main

events (Figure 2). In keeping with the previous paragraph,

digital data have existed long before the computer age in pre-

electronic digital form stored in cabinets or research institu-

tions as numbers and text in articles, notebooks, or textbooks.

The punched-card system was adopted in soil science from the

1950s (e.g., by Muir & Hardie, 1962; Wischmeier, 1955), but

it was the general purpose computer and the conversion of pre-

electronic digital soil databases into digital ones that brought

a new tool for the soil scientist in the 1960s. With the com-

puter, the dramatic expansion of the digital soil science began,

aided by the internet in the 1990s and the widespread use of

digital remote, airborne (1980s), or proximal (1990s) sensors

and instruments. One of the first instruments proposing a dig-

ital signal were geophysical sensors EM31 in the 1970s. The

global positioning systems (GPS) became widely available to

civilians by the 2000s. Finally, cell phones and the high-speed

internet became available to a large audience from the 2000s

onward.

1.4 Objectives of the paper

In this paper, we shall explore how digital science and tech-

nology has affected our science—the study of the soil. To

some degree, all of our research and teaching had been

enabled, enhanced, and expanded by the digital convergence.

Indeed, the understanding of all aspects of “soil” has been

strengthened and intensified by digital data, technologies, and

approaches. We will outline how soil science has changed

using illustrations of intellectual and technical developments

enabled by the digital convergence. The examples originate

largely from work in pedometrics, digital soil mapping, dig-

ital agriculture, and soil security. We further discuss actual

failures and potential dangers of digital soil science. Finally,

we will speculate on what might evolve over the next decade

and take a stab in the dark to speculate on what may lie over

the horizon.

2 WHAT HAS DIGITAL FACILITATED?
MAJOR SUCCESSES

2.1 Remote soil sensing

Soil scientists have used remote sensing since the 1920s

to segment the soil-landscape into homogeneous areas with

aerial photographs (e.g., Bushnell, 1929), but it was the full-

scale digitization that made remote sensing images available

for computer processing or statistical inference. Manual dig-

itization of early analog Landsat imagery began in the 1970s

(Rogers et al., 1975). Later, analog sensor data were imme-

diately digitized on-board the spaceborne or airborne with

embedded analog-to-digital devices. Early studies of remote

digital sensing of soils used airborne multispectral data or

passive (radiometry) and active (radar) microwave techniques

(see, for example, Kristof et al., 1973; Schmugge, 1978).

For nearly four decades, soil scientists have taken advan-

tage of the constant stream of digital data brought by remote

sensing. A large number of passive and active remote sensors

were developed (Wulf et al., 2015): optical multispectral,

spectroscopy, thermal, or microwaves, but also radar and light

detection and ranging (LIDAR) sensors such as synthetic

aperture radar (SAR) systems. The spectral range available

for soil scientists have broadened, and so the applications.

Remote sensing can characterize a large range of soil proper-

ties: minerals, texture, moisture, carbon, salinity, carbonates,

and contaminants. Palacios-Orueta and Ustin (1998) deter-

mined topsoil iron and organic matter contents from visible

and infrared remote sensing data in two watersheds of the

Santa Monica Mountains, USA. Dehaan and Taylor (2003)

estimated soil salinity with hyperspectral imagery to map

irrigation-induced salinization in the Murray Basin, Aus-

tralia. Mulder et al. (2011) went on to recognize three main

components that remote soil sensing data support: (a) the

segmentation of the landscape into homogeneous and mutu-

ally contrasting soil-landscape units, (b) the estimation of soil

properties using physical or empirical models, and (c) the

interpolation of soil point information as a secondary data

source.
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The analysis of large streams of digital remote sensing

data has been facilitated by digital tools. Computer process-

ing soon replaced hand computation of analog images. For

example, Palacios-Orueta and Ustin (1998) computed the

depth of the band and performed principal component anal-

ysis on the spectra, whereas Vaudour et al. (2019) used a

large stack of Sentinel 2 data, partial least squares regres-

sion and variogram analysis for mapping several soil proper-

ties. Among recent digital developments, collaborative plat-

forms for preprocessed data sharing emerged. ScienceEarth

(Xu et al., 2020) or Google Earth Engine (Yu & Gong, 2012)

are examples of cloud-based computing environments. Other

interfaces administer large spatio-temporal remote sensing

datasets, for which daily production exceeds 10 Tb—for

example the DataCube (Lewis et al., 2017), which has recently

been adapted to the open-source R programming environment

(Appel & Pebesma, 2019).

2.2 Proximal soil sensing

In the 1900s, a large number of studies and patents applied

the sensing principles to the study and mapping of the subsur-

face. Schlumberger (1920) details several electrical prospect-

ing methods for mineral detection and mapping. As early as

1938, a review by Rust (1938) declared that about 100 arti-

cles were being published each year on electrical prospecting.

Using these principles, a study by Haines and Keen (1925)

is presumably (McBratney & Minasny, 2010) one of the first

proximal soil sensing studies. The authors used an on-the-

go soil sensor and made a high-resolution analog map of the

soil mechanical resistance of a field at the Rothamsted Exper-

imental Station in England. As the timeframe suggests, the

maps were hand drawn and the data from the sensors required

human reading. Here, too, the last decades have witnessed

an explosion in the variety of proximal and digital soil sen-

sors and techniques: electrical resistivity, laser diffraction,

visible and infrared sensors, digital cameras, hyperspectral

scanner, X-rays, micro- or radio waves, gravity, and more

(Viscarra Rossel et al., 2011). Proximal soil sensing can be

loosely defined as the measure of soil characteristics using

sensors at a distance from the soil no greater than 2 m. It has

provided abundant and cheap digital data for soil scientists

and has fueled the development of precision agriculture and

the subdiscipline of digital soil morphometrics.

The most significant developments in proximal soil sens-

ing were led by progress in digital soil spectroscopy, primar-

ily in the visible and infrared range of the spectrum. Research

on laboratory and field spectroscopy began in the 1970s (see,

for example, White, 1971), but it is only in the past 30 yr,

coinciding with the development of digital sensors and tools,

that soil spectroscopy has become an active area of research.

Soil scientists in the 1980s used laboratory spectrometers to

rapidly measure the chemical composition of the soil, focus-

ing mainly on texture, mineralogy, and soil organic matter.

The use of a portable spectrometer is described from the

1990s (Shonk et al., 1991), followed a decade later by on-the-

go soil properties estimates with field spectrometers (Stenberg

et al., 2010). In addition to the abundant amount of digital

data produced by spectrometers, digital tools to store and han-

dle these data have also developed. Soil spectral libraries are

digital data frames of soil infrared spectra combined largely

with wet chemistry measurements. Digital convergence con-

tinued to trigger developments with the internet and permit-

ted a global collaboration in 2016, achieved with the pub-

lication of a electronic global soil spectral library (Viscarra

Rossel et al., 2016) composed of 23,631 digital spectra. As

a corollary to the increase in the availability and diffusion of

digital spectra, a new field of research called chemometrics

developed in the use of data analytic for spectroscopic data,

with adaptation of these tools in open source programming

languages (e.g., Wadoux, Malone, et al., 2021).

Maturity in the use of various digital sensors in soil sci-

ence has led to the integration of multiple proximal sensors

into a single system. Using complementary sets of sensors

has several advantages in estimating various soil properties

in the field; in particular it increases the range of the elec-

tromagnetic spectrum covered and it enables estimating soil

properties with more confidence than when using a single sen-

sors. An example is the study of Taylor et al. (2006), which

reports on the development of a multisensor platform with two

electromagnetic induction instruments, passive gamma, elec-

trical resistivity, and pH sensor. On-the-go soil measurements

with platforms is enabled by real-time kinematic GPS. Digital

GPS data and associated receivers are imperative for proximal

soil sensing and to combine the platform measurements with

a set of low-cost, digital, and accurate environmental infor-

mation such as elevation and slope at the measurement point

(Viscarra Rossel et al., 2011). An example of a multisensor

platform is shown in Figure 3.

2.3 Digital soil mapping

Early soil maps presented in analog form often result from a

compilation of analog data and data from field surveys that

are digital in form (e.g., numbers serving to define the con-

tent of the soil map units). The development of the com-

puter in the 1960s and numerical processing made possible

digital representation of soil maps, first by stepped bound-

aries and later with curved lines (Legros, 2006). Digital

data stored in punched-cards, punched tapes, and magnetic

tape were translated to an electronic digital format to being

available for numerical analysis. In the 1970s, for example,

Webster and Burrough (1972) collected 84 soil samples on a

grid for an area of north Berkshire in the United Kingdom.



WADOUX AND MCBRATNEY 5

F I G U R E 3 A multisensor soil sensing platform composed of a RSX-1 gamma spectrometer (Radiation Solutions) and an electromagnetic

induction instrument (Dualem21; Dualem). The sensors are mounted on a field vehicle equipped with a high-precision differential GPS (DGPS) to

sense the soil of a vineyard of the Pokolbin region in the lower Hunter Valley of New South Wales, Australia

Principal component analysis on 17 soil properties and map-

ping of the first component revealed agreement of the soil

spatial variation with an existing soil series map. From this

early example, progress has been considerable with the soil

information systems, relational database management sys-

tems, and remote sensing in the 1970s, and the geographic

information systems and geostatistics in the 1980s. In the

2000s, the explosion of information technology and digital

soil data available for digital soil mapping, denoised GPS sys-

tems coupled with new tools in statistics and data mining, and

cloud processing have made digital soil mapping a very suc-

cessful subdiscipline of soil science (Minasny & McBratney,

2016).

The current trend in digital soil mapping activities illus-

trates the extreme reliance on the digital. For example,

Stockmann et al. (2015) made a global-scale and spatio-

temporal assessment of topsoil organic carbon at 500-m reso-

lution. The authors used time series of remote sensing images

stored in the Google Earth Engine platform and preformed

cloud processing on 15 million (land) pixels per year (i.e.,

around 238,240 million pixels between 2001 and 2016). This

is in line with Lagacherie and McBratney (2006), who evoked

Moore’s law (Moore, 1965). They predicted two decades ago

that increase in computer power would lead to an exponential

growth in the number of pixel that future digital soil mapping

projects could tackle. Minasny and McBratney (2016) revis-

ited this model and found that the number of pixel could dou-

ble every year. In fact, we may argue that we have far exceeded

these predictions. Chaney et al. (2019) generated a probabilis-

tic soil property maps of the United States at about 30-m res-

olution. With a high performance distributed cloud computer,

it took only 5 h to predict 9 billion grid cells.

With the digital tools, applications of digital soil map-

ping are constantly expanding. For example, Lagacherie et al.

(1995) used data from a soil survey in a reference area for

mapping in an independent, wider area. Data mining was used

by Bui and Moran (2003) to fill gaps in soil survey over

large areas in the Murray–Darling basin in Australia. In this

study, environmental covariates are combined with existing

soil maps to model and predict soil types. The use of data min-

ing and machine learning for digital soil mapping has attracted

much attention in the past two decades; it has been covered in

a recent review by Wadoux et al. (2020). Other examples of

digital soil mapping studies are Häring et al. (2012), who used

rules from a calibrated model to disaggregate soil map units

into soil series, whereas Kempen et al. (2009) used multi-

nomial logistic regression to model the relationship between

environmental covariates and soil groups of a legacy soil map

and updated the map by estimating the probability of occur-

rence of major soil group on a fine grid. Review of digital soil

mapping studies are available in Lagacherie and McBratney

(2006) and Minasny and McBratney (2016) .

2.4 Soil microbial characterization

In the mid-19th century, Pasteur developed methods of isola-

tion and cultivation of microorganisms. On this foundation,

early studies on soil microbial diversity used culture-based

methods to isolate and purify soil bacterial species and clas-

sify the isolates based on phenotypical characteristics (Tate,

2020). The species composition between sites and the diver-

sity of a community is quantified with numerical methods

such as cluster analysis or through computation of diver-

sity indices. No doubt that more complete analyses are now

permitted with the digital and the computer-based numeri-

cal analysis. Procedures to estimate soil biological diversity

using surrogates (e.g., community-level physiological profil-

ing and phospholipid fatty acid analyses) likewise benefited

from the digital convergence. As for most present-day sensors,

gas chromatography used in phospholipid fatty acid analysis

now has embedded analog-to-digital signal converters, and

digital data of community abundance are treated with multi-

variate techniques such as principal component analysis. For

example, Kelly et al. (1999) used principal component analy-

sis to evaluate the effect of sewage sludge on soil heavy metal

concentrations and soil microbial communities. However, it is

with the advent of molecular methods based mostly on DNA
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analyses coupled with developments in bioinformatics that

analysis of digital data produced by sequencing techniques

were made possible.

Target genes (e.g., 16S ribosomal RNA [rRNA]) of

DNA extracted directly from soil samples (i.e., community

DNA) are amplified by polymerase chain reaction (PCR)

based techniques. The recent development of digital high-

throughput amplicon sequencing techniques has enabled

new approaches for the profiling of microbial communities.

Metabarcoding allows to determine which microbial species

are present in a soil sample by (a) targeting specific sequence

of the DNA (i.e., barcode), (b) sequencing the corresponding

DNA amplicons, and (c) bioinformatics analysis of the

sequences. High-throughput sequencing is permitted by new

digital platforms called next-generation sequencing (NGS)

technologies, such as Illumina (Caporaso et al., 2012) or Ion

Torrent (Whiteley et al., 2012). The Illumina HiSeq2000, for

example, generates more than 50 Gb of digital data per day,

which is equivalent in a 10-d period to 1.6 billion 100-bp-end

reads (Caporaso et al., 2012). The incredible amount of digital

data generated by these NGS technologies has triggered the

development of bioinformatics tools and software to analyze

these large datasets. Software packages such as QIIME

(Caporaso et al., 2010) or mothur (Schloss et al., 2009) are

specifically designed for the analysis of 16S rRNA gene

amplicon libraries from NGS technologies. With the internet

and availability of electronic data storage, sequences can

also be compared to curated taxonomic reference libraries

(e.g., by BLAST [basic local alignment search tool] search in

the National Center for Biotechnology Information [NCBI]

Nucleotide Database) to identify the soil biodiversity at

a site.

The development of metagenomics techniques has also

been facilitated by the digital. Instead of targeting specific

fragments of the genome, metagenomics aims at sequenc-

ing the genomes of a population of microorganisms, without

PCR amplification. However, metagenomics produces mas-

sive amounts of digital data, amounts that increase as the

sequencing technologies change and the digital tools to han-

dle them become more efficient. A typical microbiome study

generates several gigabytes of digital data, but the amount

of data produced can increase dramatically as the sequenc-

ing depth increases. Analysis of these data is done on com-

puter clusters and requires extensive bioinformatics expertise.

Sequencing a soil metagenome is ongoing research, but initia-

tives such as the TerraGenome international sequencing con-

sortium (Vogel et al., 2009) attempt to sequence and anno-

tate a reference soil metagenome. The tools to reach such

objectives are international collaborations and open-system

electronic data management and sharing through internet web

pages and platforms.

2.5 Cell phone and soil applications

The immediate popularity of cell (mobile) phones from the

2000s onward and the integration of digital cameras into

them have motivated soil scientists to devise new ways of

characterizing the soil. Since 2010, most cell phones have

embedded high-resolution digital cameras and GPS position-

ing. Using principles of remote and proximal soil sensing,

several authors have used digital images of soil recorded

under controlled, indoor conditions (e.g., Levin et al., 2005)

to estimate soil properties such as soil organic carbon. Esti-

mation of the soil properties relies on the R-G-B color infor-

mation of the image pixels. Applying these principles, digi-

tal images from cell phones have been used to estimate soil

color by Gómez-Robledo et al. (2013) and by Stiglitz et al.

(2016) with an additional sensor. Digital images of 8 megapix-

els are stored on the phone with the JPEG compression for-

mat, and computing is made by the phone processor. Han

et al. (2016) used the soil color recorded by the camera for

near real-time classification of the soil profile with machine

vision. This was taken one step further by Aitkenhead et al.

(2016) by using the connection between the app and a server-

side database to estimate multiple soil properties with cloud

processing.

The principle of using cell phones for a range of rapid

soil analyses was adapted into a relatively small number of

applications making use of high-resolution digital cameras,

information transfer, and cloud processing. Applications have

mostly been used for fast and easy data collection—for exam-

ple, Flynn et al. (2020) evaluate the SLAKES app. This appli-

cation quantifies aggregate stability with a simple experiment

by recording images of soil aggregates as they disaggregate.

More recently, Golicz et al. (2020) developed a phone appli-

cation for soil nutrient analysis by the using the phone as

a portable reflectometer. They showed that the applications

could accurately estimate nitrate concentration, but that phos-

phorous estimation was more complicated.

Cell phone software applications serve as an interface

between science and citizen science, by enabling crowd-

sourcing of soil data by nonspecialists. The mySoil appli-

cation (Shelley, 2012) developed by the British Geological

Survey is intended for the nonexpert user of soil informa-

tion. Based on the postcode or the GPS location, the user

access simple soil information presented in a user-friendly

way. The public is also invited to submit soil surface observa-

tions such as texture and description. Another, perhaps more

successful, UK initiative is the Open Air Laboratories (OPAL;

Lakeman-Fraser et al., 2016) project, in which the public is

invited to participate actively to earthworm data collection

with a clear field guide and documentation. They also allow

the nonspecialists to obtain custom information based on the
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F I G U R E 4 Various aspects of soil science have been enabled, enhanced, and expanded by the digital convergence: namely, digital soil

mapping, soil microbial characterization, proximal and remote soil sensing, and soil applications. Lack of an efficient digital integration in data

federation and sharing, soil field description, and quantitative system of soil classification has, conversely, hindered intellectual and technical

developments despite that no obvious obstacles from existing digital technologies exist

phone GPS location. For example, the purpose of the Soil-

Info App of ISRIC (Hengl & Mendes de Jesus, 2015) is to

provide access to soil data of the SoilGrids project. It also

supports on-field digitization of soil profile data. These ini-

tiatives, enabled by the digital, facilitate public engagement

and education around soil science and are reinforcing the

feeling of empowerment and commitment of public in soil

protection.

3 LACK OF SUCCESS

Digital convergence has brought undeniable new capacity to

analyze and study the soil. There remain some areas, however,

where progress aided by the digital can be made, and for which

we have the capabilities and no obvious obstacles from exist-

ing digital technologies (Figure 4). These present-day failures

of digital soil science are discussed below.

3.1 Data federation and sharing

In the past, soil data storage and compilation have been initi-

ated with much enthusiasm since the 1980s (e.g., Ragg, 1977;

Rudeforth, 1975), with a number of successful attempts in

data collection and harmonization for the creation of local,

regional, and global (Jian et al., 2020) digital databases.

Bouma et al. (1999) discussed the need for soil databases in

the context of precision agriculture: building a database rep-

resents a one-time, long-term investment valid for many years

and is supported by recent information technologies.

Digital convergence indeed enables large-scale initiatives

driven by soil database collection and harmonization. Soil sci-

entists are also increasingly generating streams of data—for

example, with proximal soil sensing techniques. Individual

soil scientists, however, are not systematically placing their

data into digital soil databases, either because of perceived

impediments to data sharing (e.g., fear of misuse of data,
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perceived legal constraints) or because of unclear benefits that

data sharing may bring. Lack of time and funding is one of

the main reasons scientists do not share their data electroni-

cally, but they also recognize that their ability to answer sci-

entific questions is hampered by the difficulty to access data

produced by others (Tenopir et al., 2011). In Australia, the

integration of new and legacy soil data is a current priority of

the National Soil Research Development and Extension Strat-

egy (Robinson et al., 2019). These efforts build on existing

soil information systems and recent national open access poli-

cies to develop a digital spatial data infrastructure via a web

service. Access to data produced by the public and private

sectors is still conditioned to appropriate data licensing agree-

ment. Recent developments in distributed ledger technologies,

particularly the blockchain, are opening the way for a signifi-

cant new (bottom-up) approach in data sharing, in which the

data are not centralized into a single institution, but distributed

through an online distributed database. Such a digital sys-

tem has been simulated by Padarian and McBratney (2020) to

build a global soil spectral library, with characteristics such

as decentralized data sharing and governance. Clearly, the

appropriate digital tools are available for soil scientists to

put their data into soil national or international digital soil

databases.

The next challenge concerns the further exploitation of

data obtained by previous studies. Soil scientists need to

capitalize on previous data collection, either by consulting

databases to gauge the result of local studies, or to deter-

mine the possibility of generalizing some findings. There

exists, for example, no unique database for metabarcoding

data (Orgiazzi et al., 2015). Existing databases (e.g., NCBI)

focus on DNA sequences with basic metadata, but the reuse of

these data is limited to visualizing sequence variation among

taxa. Orgiazzi et al. (2015) advocate the creation of DNA

sequence data linked to soil properties and environmental

information and metadata. This would enable mapping and

further use of existing data for a purpose other than that which

they were collected. They also warn against the loss of data of

potential interest (e.g., the sequences identified as nonmicro-

bial). As our knowledge increases and technologies advance,

storing these unused data into digital repositories may prove

valuable in the future. This was also promoted in proximal

soil sensing by Wadoux, Malone, et al. (2021): soil spectral

data might reveal in the future soil information currently dis-

regarded, such as microbial biomass carbon, polluting chem-

icals, and microplastics.

3.2 Adopting digital soil field description

We have been slow to adopt digital technologies for data

generation. This is particularly true for everyday field soil

description which essentially uses the same technology as in

the 1950s. For example, the FAO Guideline for soil descrip-

tion (Jahn et al., 2006) emphasizes descriptive information

and qualitative estimates of soil properties, by no means using

the tools from the digital convergence, with the exception of

the GPS to obtain the geographic location and elevation data.

In Australia, the second edition of the guidelines for survey-

ing soil and land resources aimed at updating previous soil

survey that were based on a logic that predated the computer

(McKenzie et al., 2008), with, among others, chapters on sens-

ing, pedometrics, and uncertainty. However, the authors noted

that the adoption of digital technologies for soil measure-

ment has not proceeded at the same pace than in other fields

(e.g., precision agriculture). Soil scientists are lagging behind

in terms of in-field digital technologies applied to field soil

description. There is no widely adopted digital equivalent to

the Munsell soil color chart for soil color analysis or to the

10% HCl effervescence test for evaluating calcium carbonate.

Current proximal soil sensing techniques have changed the

practices in soil measurements dramatically, and we need to

apply these powerful digital technologies, coupled with new

internet-based and connected data platforms and cell devices.

No single sensor can quantify all properties accurately. Cur-

rently large portions of the electromagnetic spectrum can be

recorded in situ with portable devices, but their combination

with other sensors and techniques is still underexploited. The

field of digital soil morphometrics (Hartemink & Minasny,

2014), which study the soil profile as a basic entity with a

range of digital tools and techniques, has brought many digi-

tal technologies to the field. We have enough technology to

estimate quantitatively nearly all properties from the usual

soil field description guideline of Jahn et al. (2006). Jones

and McBratney (2016) argued in this sense and recommended

to search for new technologies, in particular the noninvasive

ones. Noninvasive sensors such as ground-penetrating radar

and electromagnetic induction are already proven efficient in

describing a set of soil properties without digging a soil pit.

As for digital soil morphometrics, the soil field description

needs to leverage the opportunity of the digital. Data fusion

from multiple sensors coupled with connected soil inference

systems (McBratney et al., 2002) will provide the most use-

ful information. The great power in the near future will come

from the wide adoption of easy-to-follow soil field descrip-

tion procedures, perhaps residing in cell phone apps, but the

potential for fusing different sensors and digital techniques for

soil field description are myriad.

3.3 A formal digital quantitative system of
soil classification

Soil classifications have been derived for a century or

more. They combine our current understanding of soil pro-

cesses and formation coupled with field observation and soil
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measurement. In the 1960s, the advent of the computer led soil

scientists to study numerical classification, which was devel-

oping quickly in biological systematics. It also brought new

tools that were almost immediately applied to create (quanti-

tative) numerical soil classification from measurement of soil

properties, in place of the existing qualitative classifications.

Despite a major leap forward with the advent of computer

and later various digital technologies, research on numerical

soil classifications have not advanced much in the last four

decades.

Existing computer statistical techniques of data analysis

need to be applied, digital information systems to be used and

sensing technologies to be adopted. Soil scientists are famil-

iar with many of the computational and statistical methods

of data analysis such as calculation of similarity and taxo-

nomic distances. We should investigate how these numerical

methods could serve as basis to a unified quantitative sys-

tem for soil classification that enable transfer between existing

numerical classifications and allocation to new individuals to

the classification. Current classifications have all been devel-

oped to fulfill specific applications, but no unified system has

been developed. There is also enough technology to think of

a unified global soil classification providing a unbiased basis

for merging the existing local and regional soil classification

systems. The two existing global soil classification systems

(World Reference Base [WRB] and Soil Taxonomy), have no

direct linkage, and there are several problems in their applica-

tion to obtain effective local-scale soil information (Hughes

et al., 2017).

Ideally, we would be able to collect a large amount of data

from a digital soil information system, either profile data of

spatially continuous soil property maps, and apply to these

data some numerical classification algorithms. Unsupervised

classification with k-means is an example of such technique,

but other techniques that include fuzziness in the classifica-

tion could also be used. The numerical techniques and tech-

nologies have since long been used by soil scientists. We

must also investigate how soil sensing technologies might

be useful. Current sensing techniques have been successful

to retrieve various soil properties in near real time (see also

Section 2.2), and despite that they appear underexploited for

soil field description (see Section 3.2), they might be useful

for near-real-time allocation of soil individuals to a numeri-

cal soil classification. Sensing data quantify all attributes of

interest. The great power in the coming years will come from

the use of portable soil sensing devices coupled with a digi-

tal approach linking the recorded data to online, cloud-based

data analysis tools. For example, on-the-go soil sensing data

may be sent to a server and soil property estimates sent back

to the user after prediction by precalibrated statistical or data

mining models.

The time component has also been disregarded in current

numerical soil classifications. In the WRB soil classifica-

tion, for example, time is included indirectly through inclu-

sion of the pedogenetic processes. The reason for not includ-

ing time in most classification is the difficulty to obtain accu-

rate information on past soil forming factors that led to the

current soil spatial variability. The use of online platforms

such as Google Earth Engine or DataCube and long-term

digital soil evolution models may provide useful informa-

tion for soil properties evolving fast (e.g., soil organic mat-

ter). Long-term records of remote sensing images are now

available, which can be used as proxy for soil formation and

evolution. Similarly, soil evolution and earth system mod-

els may provide digital information to efficiently incorpo-

rate the time dimension into classification. Including time in

numerical soil classification is, in reality, still a long way off,

and currently no model or temporal dataset is precise enough

or has sufficient coverage to reconstruct soil past forming

factors.

4 THE DANGERS

4.1 Lack of new theory

The foremost danger with the rise in digital information and

increase in computer resources is to ensure that soil science

studies do not become supply driven (Rossiter, 2018), to the

detriment of theoretical studies. Digital data and tools are a

great aid in facilitating research in soil science (we gave exam-

ple of such successes in Section 2), but the danger might

come from the temptation of using these technologies as an

end in themselves. The digital can help answering the ques-

tions framed within theories; perhaps also the vast amount

of data allows patterns to emerge that can be used to gener-

ate hypotheses. We have highlighted elsewhere (Wadoux &

McBratney, 2021) how in digital soil mapping studies, the

hypothesis can be the useful end point of the research in which

the digital data are not used to corroborate a hypothesis, but

to suggest possible explanations to a phenomenon. Wadoux,

Román-Dobarco, and McBratney (2021) also discussed data-

driven soil science, which relies on (digital) data to generate

soil science knowledge. As the authors put it: theory-free anal-

ysis of data does not hold long in soil science. To be useful,

the digital needs to go hand in hand with theoretical develop-

ments, because the digital helps to corroborate and refine the

vision of the soil expressed by the theory, within a scientific

approach. Accumulating studies on the latest digital develop-

ments may not serve this purpose and should not drive the soil

science agenda. There is no end to digital development. There

is reason to fear that the gap between digital soil science stud-

ies and theoretical studies will grow bigger. This will question

the validity of future digital soil science studies, which may

well mismatch real-world processes, if not grounded in any

theory.
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4.2 Lack of soil science knowledge

In analyzing the current state of soil science, both in under-

graduate and graduates programs and in scientific publica-

tions, it is clear that the digital is triggering a loss of tra-

ditional soil science expertise and knowledge. Philip (1991)

lamented the lack of laboratory and field skills of young

researchers in the 1990s, making them “blissfully unaware” of

their inadequacy for soil science research. He attributed this

loss of expertise to the development of computer modeling

in research activities of students instead of more expensive

studies involving investigation of the physical world. Hudson

(1992) puts it: it takes 2–3 yr for a new field scientist to inter-

nalize the soil-landscape paradigm. More recently, Lobry de

Bruyn et al. (2017) termed graduates in soil science as “distant

and removed, metaphorically and sometimes literally, from

landscapes.” This has serious consequences. First, it affects

critical soil-related problem-solving skills. Second, and per-

haps more worryingly, the digital causes an increasing sepa-

ration between simulation studies and the real world they are

supposed to represent. The loss of soil science expertise has

several causes such as the emphasis on applied rather than

basic research and the general decline in funding for soil sci-

ence. Each of these causes has facilitated the development of

the digital. The digital is said to be cheap, whereas field and

laboratory work is expensive and time consuming. Relying

only on the digital to the detriment of other forms of research

is increasing separation between the digital soil science stud-

ies and the real world it is supposed to represent. Anyone

with a computer, easy-to-access digital soil databases, and

user-friendly software resources may produce decent results

(Bouma, 2010), but expertise is required to flag these results

when they are misleading. Another risk is to blindly rely on

digital computer models not evaluated in the physical world,

models that can be wrongfully interpreted as reality by users.

The lack of soil science expertise facilitated by the digital is a

potential source of unsound practices.

4.3 Proprietary soil prediction

We refer to proprietary soil predictions as the acquisition of

soil information from closed-source (free or commercialized)

software (Hengl et al., 2018). With the increasing share of

the digital in soil science, the use of software and complex

numerical analysis is becoming routine. For example, spec-

trometers have usually embedded software for preprocessing

and multivariate statistical analysis of the digital spectra. Soft-

ware implementations are useful because they provide the

majority with tools to render complex numerical analysis of

digital soil data practicable, but the use of close-source soft-

ware is problematic. Close-source software hide to the users

the code and workflow that generated the predictions. As a

result, in the treatment of digital soil data, and in particular

in company-owned close-source software, very little trans-

parency on the workflow is possible, and potential discrepan-

cies between software cannot be readily explained. Such soft-

ware are commonly referred to as “black boxes” and might be

covered by patents on the workflow or the way they handle

the digital soil data. Reliability of the software is also called

into question, as uncertainty is seldom provided. For example,

the so-called “Lab-in-the-Box” (AgroCares) is an on-the-spot

soil testing instrument capable of predicting a large set of soil

physical and chemical properties with a single infrared scan of

a soil sample. What preprocessing is applied to the spectra and

what workflow and regression models are applied to the spec-

tra are undisclosed. The instrument is connected to an user-

friendly cell phone application that provides users with the

results of the soil scan. Ironically, this commercialized black-

box system is made possible by the effort of many providers of

noncopyrighted digital soil data, such as research institutions,

individual researchers, and nonprofit organizations, and the

creators of digital soil database, on which complex machine

learning models can be precalibrated and sold.

4.4 Lack of new data generation

It has been argued that with the digital, traditional soil inven-

tory programs are coming into an end and primary data col-

lection is meant to decline. In most Western countries, the

liberalization of the economies since the 1970s and the short-

term research programs are compromising the collection of

new soil data. In Australia, for example, the number of soil

profile description collected per year has dropped since the

1990s (Biggs et al., 2018). A similar trend is observed in

other countries. With the digital, and in particular the advent

or remote sensing methods and statistical modeling since the

1970s, providing spatially explicit estimates of soil properties,

many areas of soil science are now “done from the desk,” and

verification is only occasionally performed in the field (Philip,

1991). Projects involving the digital and digital data collect

few primary soil data, and thus appear cheaper and to pro-

vide faster results than projects involving new data collection.

Paraphrasing Thomas (1992), dollars are directed towards

number generators rather than data takers. Digital projects

may appear counterproductive because they are often done at

the expense of new data collection (Basher, 1997), which in

the long term will result in a decrease of the quality of the

digital information and in poor return of investment for the

funding agencies and national soil survey programs. This was

also highlighted elsewhere (Ibanez, 2006): the digital cannot

operate indefinitely only on the basis of inferred data (e.g.,

proximal or remote soil sensing). We need more field data to

improve the efficiency of the digital technologies and elec-

tronic computerized simulations. In this digital soil science,
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the danger is to contribute only in collecting existing digital

soil data, sharing them and generating new numbers without

participating to the updating of soil inventories.

4.5 Doing too much with too little

As a consequence to the lack of soil data collection, digital soil

science raises concerns on whether we are tempting to do too

much with too little. The current style is to use digital tech-

niques, computer simulation aided by digital soil databases

to generate empirical estimate—to generate numbers using,

for example, pedotransfer functions or soil mapping mod-

els. Indeed, it is fashionable, and the capabilities to generate

numbers, simulated estimates of soil properties or attributes,

appear endless. Minasny and McBratney (2016) report on the

increase in digital soil mapping resolution; we are produc-

ing soil maps that are always increasing in spatial resolu-

tion. In Australia, maps of soil properties were produced at

250-m resolution in 2005, 100-m resolution in 2011, and 30-

m resolution in 2020, but the number of new primary soil data

collected to support these increases did not follow the same

trend via increased sampling density. Several authors have

reported the lack of new soil data collection in Australia for

the same period (see also Biggs et al., 2018, or Section 4.4).

Another example are the soil property maps of Africa, pro-

duced at a spatial resolution of 250 m in 2015, and updated

at 30 m in 2020. Both mapping studies use the African Soil

database composed of legacy digitized soil profiles. The sec-

ond study of 2020 includes little additional soil profiles, but

extends the number of generated soil maps produced. These

studies are devoted to provide soil data (soil property maps)

indirectly, but without new data collection, the connection of

these maps to the reality may well be becoming fainter. It is

not clear whether the available legacy data and the rate of pri-

mary data production can support the considerable societal

demand for digital soil information. In this way, digital soil

mapping is becoming a victim of its own success. We need to

develop ratios and standards of input to output data.

5 THE IMMEDIATE FUTURE

5.1 Machine learning and natural language
processing

Although machine learning has been exploited considerably,

the continuous development of digital soil databases and com-

putational power in the near future is likely to support a further

increase in the use of machine learning. Machine learning is

currently used mostly to build empirical relationships between

physical, biological, and chemical soil data and environmental

factors, and to predict these soil data from the pattern found

in the data (see also Section 2.3). It is also widely used in

chemometrics (Section 2.2), to build empirical relationships

between laboratory-measured soil property values and spectra

from optical sensors composed of several thousands of wave-

lengths. Future research will use these complex statistical and

algorithmic tools in combination with pedological expertise

and tacit knowledge learned through experience. This can be

done in several ways—for example, by (a) including pedolog-

ical knowledge in the machine learning modeling approach,

or (b) extracting insights and hypotheses from the empirical

relationships found in the digital soil data. Machine learning

will thus be complementary to existing mechanistic models,

instead of supplanting them. Machine learning models have

the advantage of being highly flexible, often more accurate

than mechanistic models, and to allow modeling when little

is known about the process under study (Ma et al., 2019).

Conversely, mechanistic models could provide physical con-

straints to machine learning models and guide the model in

area of evident extrapolation (Follain et al., 2006). In paral-

lel, machine learning will also be used to tackle some of the

pressing challenges of digital soil science—for example, to

incorporate different data sources, such as soil measurements

from different sensors and laboratory techniques, or to com-

bine environmental information from different data providers.

The near future will also see the development of natural lan-

guage processing in soil science. Soil science benefits from a

large collection of historical (qualitative) descriptive data that

are currently being digitized into digital data in text form (nat-

ural language). Although this type of information is usually

disregarded in existing electronic databases, it will be possi-

ble to use the descriptive soil data to complement common

numerical analysis of digital data (as in Furey et al., 2019, for

example).

5.2 Internet of Things (IoT) sensors

The list of digital sensors used in soil science is very broad,

and most of them have been considerably exploited (e.g., vol-

umetric soil moisture sensors, visible and near-infrared [vis-

NIR] spectrometers, and airborne LIDAR). For each of these

sensors, the digital data are still collected by a user. The near

future will see an increase in connected objects within the con-

cept of Internet of Things (IoT; Gubbi et al., 2013) in which

sensors will “talk” to each other through the internet and wire-

less connections. Instead of a user collecting data from soil

sensors, the digital data will be transmitted directly to the

cloud where they can be processed and visualized. To date, the

main obstacle in the development of IoT sensors was the cost

of initial investment in wireless and connected sensors and the

lack of broadband coverage in many areas of the world (Ojha

et al., 2015). Cost in connected sensors has been considerably

reduced with the extensive adoption of these sensors for dig-
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ital and precision agriculture (Khanna & Kaur, 2019). There

has also been a recent improvement in communication proto-

cols requiring low bandwidth for areas where broadband cov-

erage is lacking. Data also can be stored and transmitted inter-

mittently to the cloud with satellite communications. Another

obstacle, perhaps secondary in soil science compared with,

for example, digital agriculture, was the fear over security

issues for data privacy and ownership, and cyber attacks on

data storage and exchange in the cloud. In this too, consider-

able progress has been made because almost every institution

has now adopted license policies on data (e.g., Creative Com-

mons licenses; Kim, 2007) and security strategies and pro-

tocol to protect against online threats. All in all, IoT sensors

will permit a better spatial and temporal coverage of the soil

with automated data collection and transmission, which might

bring considerable advances in the understanding of short-

and long-term soil variation. To achieve this, connected sen-

sors will need to be deployed and maintained over long peri-

ods of time to obtain a quasiexhaustive picture of the variation

of soil properties over a range of environmental conditions.

5.3 Robotic measurements

Robotic measurement is being made operational for a wide

range of soil science applications. Robots are a precision and

autonomous technology that have already been widely used

in digital agriculture—for instance, as automatic and mobile

feeding systems that distribute fodder through the day, or as

outdoor weeding machines that physically destroy the weeds

using built-in high-precision GPS guidance, a series of sen-

sors such as cameras, and statistical algorithms coupled with

machine vision (Bellon-Maurel & Huyghe, 2017). As in dig-

ital agriculture, robots in soil science will enable repeated

and precise measurements, coupled with sensors for in-field

soil analysis. This will considerably reduce the environmental

impact and the costs of future soil surveys, and increase the

accuracy of the measurement protocol. At the time of writ-

ing, startups are developing autonomous robots to collect soil

samples. One of them is equipped with high-precision GPS

and high-speed hydraulic auger. The soil auger robot is less

heavy than conventional mechanical soil auger mounted on

a vehicle and has a precision of few centimeters for revisit-

ing previous sampling locations. This obviously appeals soil

scientists interested to increase the spatial and temporal cov-

erage of soil surveys. Other robots in development are cou-

pled with penetrometers to measure soil compaction, or elec-

trical resistivity. Research in this direction is still preliminary,

published in engineering journals and developed in collabora-

tion between research institutions and industrial partners. No

doubt that robotic soil measurements, in combination with the

IoT, will soon be of valuable help in soil survey. Autonomous

robots will collect soil profile cores, analyze them onsite using

a set of optical sensors (e.g., vis-NIR spectrometer), and send

digital information to the cloud via a set of wireless sensor

nodes where the remote user will monitor the soil data collec-

tion. Adaptive sampling techniques using similar technologies

are already being deployed (see, for example, Fentanes et al.,

2018).

5.4 Big data and mega-computation

We can expect a dramatic increase in digital data production

which will trigger tremendous computational challenges. The

computational power that will be needed outstrips by far the

current power available in desktop and cluster computers. Soil

scientists will need to develop computational tools, software

packages, and pipelines for accessing and analyzing the data.

In addition to requiring advanced training in computer sci-

ence, digital soil data analysis is likely to be performed in

large research institutions. These benefit from the most spe-

cialized researchers and social advantages of acquaintance

with researchers with specific expertise. The same institu-

tions will possess the largest soil data generation tools (e.g.,

remote sensing imagery) and the facilities to analyze them.

Only well-financed and centralized institutions will pay for

the expensive computer power and will maintain specialized

infrastructures. Still, analysis of soil “big data” in a distributed

fashion is likely to increase. Privately owned cloud comput-

ing platforms have massive, virtually unlimited capacity and

are cost efficient for individual researchers or small insti-

tutions. The Africa Soil Information Service (AfSIS) Soil

Chemistry database, for example, is currently stored in the

Amazon Web Service (AWS), and tens of terrabytes of Sen-

tinel data are preprocessed in the cloud using AWS. Strasser

and Edwards (2017) contend that “big data” are too large to

be fully exploited by the institutions that produced them. They

are also increasingly made publicly available. The availabil-

ity of open large soil datasets and cheap distributed comput-

ing will inevitably change to landscape of science, where any-

one could potentially perform research outside large research

institutions. All in all, in the near future, mega-computing and

big data will increasingly be important in digital soil science,

but there will be no restrictions on what can be computed.

Models built on these big data will become more complicated

than today’s models but will also include more variables and

processes and predict at finer time steps and spatial resolu-

tions. Models will always be at the forefront of the available

computational resources (Rossiter, 2018).

5.5 Global soil understanding

There is an increasing understanding that the soil resource

is finite. We need to monitor the state of the soil globally to
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understand what role the soil plays in earth system function-

ing, the drivers of soil dynamics, and to unravel the major

natural and artificial processes (Pennock et al., 2015). We

also need to decide what kind of intervention we can perform

locally to secure and enhance the soil. Most digital tools are

well adapted (i.e., “scalable”) to support studies at a global

scale, and we speculate that in the near future, the global

understanding of soils will increase jointly with development

of digital data availability. We will know the properties and

functions of soil at very local scales everywhere on the planet.

We will know how this local functioning scales up to water-

shed and ecoregions. To achieve this, we will likely make

more use of remote sensing imagery and spatially continuous

measurements of soil properties made by various sensors.

Data will not only be composed of digits, but also digitized

(analog) qualitative data from past field soil descriptions.

In fact, soil scientists have already started to compile global

digital data for understanding the soils. The digital soil maps

of the world (Hengl et al., 2017), for example, were a “proof

of concept” that global digital soil data can be compiled,

harmonized, processed, and distributed digitally through an

online platform. Despite the drawbacks of such global maps

for regional or local scale soil understanding (Mulder et al.,

2016), these efforts foreshadow many others that are already

taking place or are expected to appear in the coming years.

The global maps of earthworm diversity (Phillips et al.,

2019) resulting from a global effort in data compilation, for

example, have revealed that climatic drivers are more likely

to explain earthworms diversity than soil types. Corollary to

the development in global digital soil data sharing, the digital

techniques to handle these dataset will also become more

complex. The IoT will enable continuous feedback between

measurements and soil models. Modeling of soil will be avail-

able in near real time using cloud computing and sensor net-

works. Finally, global models monitoring the state and evolu-

tion of the soil will be constantly refined and updated at local

scale.

6 BEYOND DIGITAL: A LOOK INTO
THE CRYSTAL BALL

Predicting the impact of the digital in soil science is limited by

our current knowledge on the forces that will drive soil science

research in the far future. We ignore which new ideas, pressing

challenges, technologies, techniques, and sensors will trans-

form our discipline. Thus, in predicting how digital soil sci-

ence may develop in a few decades to a century, there is always

the barrier of unpredictability and high uncertainty that any

long-term prediction involves. Instead of making predictions,

we speculate on three scenarios that may best represent our

intention to project potential future events. In each of the sce-

narios, we hypothesize that the digital convergence will be a

driving factor of soil science research (Figure 5), perhaps even

more so than in present-day soil science.

6.1 Digitally enabled regenerative soil
science

In this scenario, we consider the digital soil science applied to

solving the pressing problems of degraded soils and the envi-

ronmental issues that accompany this degradation. The rate

of world population growth will trigger a doubling of food

production in this century (Richter et al., 2007). This will put

unprecedented pressure on soils. We are currently losing the

best agricultural soils due to urbanization, salinization, and

erosion, and in parallel, the new soils put into production are

often of lower quality and more prone to quick degradation

(Kopittke et al., 2019). If the current pattern of soil use con-

tinues, it is expected that soils will overshoot their carrying

capacity for producing a set of ecosystem services. The human

population is a great consumer of soil resources, but the quan-

tity of soils available globally is finite. Simultaneously to soil

resources becoming scarce, future growth in food production

will also depend intimately on intensification and productivity

gains.

We speculate that in the future, the digital convergence

will support regenerative soil science with two main aspects:

(a) preservation of soils to support an optimal use, and

(b) regeneration to enhance soils to a desired state. In each

of these cases, the ambition of regenerative soil science is

to regenerate and preserve the quality of soil functioning

and to improve the capacity of providing a series of ecosys-

tem services, in particular biomass and food production. A

set integrated and interconnected digital tools will measure

and sense ecosystem and soil functioning and provide real-

time proxy information on soil condition. For example, bird

and insect measurements can be used as proxy of above-

ground biodiversity, soil carbon measurement can be used

as indicator of the overall soil capability to supporting crop

production, soil biodiversity abundance and diversity can be

sensed for estimating belowground soil biodiversity, remote

sensing will be monitoring climatic conditions and vegeta-

tion production, and so on. All these digital data integrated

into one interconnected system will serve the purpose of

constant and multiscale monitoring of the soil resource at

a site.

It is not just that the soil is monitored, but that it is steered

towards a desired state by optimizing all the components of

the ecosystem for an intended use (i.e., preservation or regen-

eration): fallow periods can be reduced, and soil conditions

can be optimized for specific soil microbes that will preclude

invasive pests in agroecosystems. In this optimal use of the

soil, artificial inputs such as irrigation, chemical fertilizers,

and pesticides are bypassed by efficient soil management
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F I G U R E 5 Summary diagram of the future aspects of soil science enabled by the digital. The immediate future of digital soil science supports

the development of digital technologies and techniques applied to the study of the soil, as well as an increasing global understanding of soils. These

new techniques and technologies can in turn permit to go beyond digital in the far future, to support the creation of digital soils (i.e., a digital twin of

the soil), and assist regenerative and extraterrestrial soil science. IoT, Internet of Things; NLP, natural language processing

strategies. In short, the digital will enable the production

of soils, optimal for a specific human and ecosystem use.

Well-drained and fertile soils for food production, soils

providing shelters for microorganism diversity, and even

clayey soils for the production of pottery. It is in fact one step

towards soil reengineering (i.e., manipulation of the soil to

cancel out the most harmful human misuses—for example,

to steer soil towards a desirable state of optimal chemical

capture of carbon).

A fact that is immediately obvious is that not all soils are

of similar capability or can be sufficiently improved for a

specific propose (e.g., for crop production). There will be

the need for a digital and autonomous “governing entity” (in

other words, a pedological “big brother”), which could per-

haps rely on the block-chain technology (an interconnected

set of databases storing the information). This entity will pro-

cess the constant stream of digital data from a network of soil

sensors to determine which purpose best suits a soil (optimal

allocation) while considering its current condition. The entity

could also preclude the connection of local food production

with distant markets.

6.2 Digitally enabled extraterrestrial soil
science

In this scenario, we consider that the new frontier in soil

science will be the study of extraterrestrial soils. The term

extraterrestrial soils is used here to describe the regolith found

in planetary bodies other than the Earth. They have some sim-

ilarities with Earth’s soils in that they result from the physi-

cal and chemical degradation of the parent rock over time,

but unlike the Earth’s soils none of the known extraterrestrial

soils show evidence of a biological component or distinctive
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“pedological” horizons along profiles (Cameron, 1963). In

fact, it is likely that the soil forming factors important for Earth

soils (e.g., vegetation or climate) are nonexistent or negligi-

ble in extraterrestrial soils, where soil forming factors such as

topography may be predominant.

In the short term, say decades to a century, exploration and

understanding of extraterrestrial soils will essentially be dig-

ital and rely on inferred rather than direct measurements. We

already have access to lunar and planetary surface samples—

for example, brought by Apollo 11 in 1969 or in the close

future in 2031 with the sample-return mission from Mars.

These samples can be analyzed but constitute a very limited

sample of the potential variability of extraterrestrial soils. We

also have limited access to a range of background properties

and characteristic extraterrestrial ecosystems in which these

soils form. This is because there are many factors that control

the basic physical and chemical characteristics of the soils in

the extraterrestrial environment that are unknown or difficult

to measure (e.g., gas exchange or pH; Certini et al., 2009).

Current methods for field data description are inadequate for

extraterrestrial soil exploration (see also Section 3). Soil pH,

for example, is difficult to estimate or infer remotely.

The close future of soil science will develop an extrater-

restrial science in which inferring the soil data, rather than

analyzing physical soil material, will be the rule and in which

understanding of extraterrestrial soil will rely almost entirely

on the digital, to the point where accessing the soil mate-

rial will be the exception. Extraterrestrial soil scientists will

have no intimate or direct contact with the soils. In fact, sev-

eral of these elements are already in place. Past missions on

Mars have already relied on inferred measurements, using gas

chromatography and mass spectrometry, and new sensors will

soon be deployed. For example, an automated microchip elec-

trophoresis analyzer mounted on a rover could detect organic

biosignatures in extraterrestrial soils (Mora et al., 2020). In

the far future, humans might populate some new planetary and

obtain access to physical soil material, but there will always

be new planetary systems to explore, so that understanding

of extraterrestrial soils will always be at the limit of what the

digital enables.

6.3 From digital soil science to digital soils

In the first scenario, we assumed that soils in the future will

remain a precious resource and that the digital will serve

the purpose of managing and regenerating this resource to a

desired state. This scenario, conversely, assumes that in the

far future the digital would be powerful enough to substitute

for the soils resource as we currently know it. This scenario is

inspired by Haff (2014), who imagined a far future in which

the soils, rivers, and biology in a technology-dominated planet

are considered as technological artifacts rather than natural

systems.

Soils would not disappear completely; the soil physi-

cal material stays in place but is populated by microsen-

sors, microcomputers, and micro-actuators that determine its

dynamics. We have shown previously (Section 2) that with

rapid technological change, sensors are becoming smaller,

faster, and multifunctional. Barometers, light, accelerometers,

and gyroscopes are already present in ordinary watches, con-

nected physical activity watches, coffee mugs, or domestic

appliances and have been translated into sensors for environ-

mental monitoring. Many elements of the environment are

monitored by sensors, to the point where the environment is

computerized and can be controlled. Synthetic environments

are being created for food production, under a digitally con-

trolled environment where temperature, light, and humidity

are regulated by algorithms and sensing devices to ensure

optimal growth conditions. The population of the soil mate-

rial with large number of microsensors coupled with wireless

technologies and the IoT may also end up with the creation of

a digital twin of the soil (as briefly discussed in Searle et al.,

2021), or, as Haff (2014) puts it, a computerized soil.

The digital twin of the soil results from deliberately scatter-

ing a large number of grain-size computers, sensors, and actu-

ators over a land area. Power is provided by ambient energy,

mostly solar but also wind or seismic vibration. Individual

microcomputers are networked one to another and wirelessly

connected to a central processing system tasked to receive and

analyze the constant stream of data coming from the land.

Microsensors would constantly measure dynamic soil prop-

erties, such as moisture, temperature, water holding capacity,

or structure and provide a real-time picture of the state of the

soil. The measurement of these sensors is coordinated with the

centralized processing system, which may instruct a response

if the state of the soil becomes unsuitable. Local actuators

would be activated to perform actions and apply forces on

the soil. Haff (2014) shows the example of actuators coun-

teracting the effect of erosion, but more complex systems can

be imagined, involving chemical and biological responses of

the soil (e.g., to chemically sequester carbon). Meanwhile, the

sensors send a constant feedback on the soil properties to the

central processing system. The soil properties are integrated

into a computer-based hierarchy of controls. Soil in this sense

become a programmable medium divorced from the classical

natural influence, and independent of nature-based solution

for its management.

7 CONCLUSION

∙ Digital convergence has changed soil science and continues

to do so.
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∙ There have been major successes via remote and proximal

soil sensing, digital soil mapping, soil biogenomics, and cell

phone applications.

∙ There have been notable failures such as the relative

lack of data federation and sharing, truly digital field

soil description, and development of digital taxonomic

systems.

∙ There are potential pitfalls with digital convergence includ-

ing lack of new soil theory, lack of soil science knowledge

by researchers, and trying to do too much with too little

information or data.

∙ In the immediate future, digital soil science will be domi-

nated by machine learning, the IoT, robotic measurement,

and big data, all leading to better global soil understanding.

∙ In the far future, digital soil science may allow use to

regenerate soil here on earth, and create multifunctional

soils on other planets and potentially create intelligent self-

organizing goal-oriented soils.
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