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A B S T R A C T

Perusal of the environmental modelling literature reveals that the Lin's concordance correlation coefficient is a
popular validation statistic to characterise model or map quality. In this communication, we illustrate with
synthetic examples three undesirable statistical properties of this coefficient. We argue that ignorance of these
properties have led to a frequent misuse of this coefficient in modelling and mapping studies. The stand-alone use
of the concordance correlation coefficient is insufficient because i) it does not inform on the relative contribution
of bias and correlation, ii) the values cannot be compared across different datasets or studies and iii) it is prone to
the same problems as other linear correlation statistics. The concordance coefficient was, in fact, thought initially
for evaluating reproducibility studies over repeated trials of the same variable, not for characterising model
accuracy. For the validation of models and maps, we recommend calculating statistics that, combined with the
concordance correlation coefficient, represent various aspects of the model or map quality, which can be
visualised together in a single figure with a Taylor or solar diagram.

1. Introduction

The quality of predictions in environmental modelling and mapping
studies is usually determined through the pairwise comparison of
measured/observed and predicted values, from which summary vali-
dation statistics describing the overall correspondence are calculated.
Common validation statistics are the mean error, mean absolute error,
the root mean square error, the R2 and the modelling efficiency coeffi-
cient. Perusal of the literature reveals that the concordance correlation
coefficient (ρc, Lin, 1989) is another popular statistics to evaluate the
overall model or map quality. Zhao et al. (2022), for example, used the
ρc to compare predictions of soil clay at field scale obtained from mul-
tiple sensors, whereas in Caubet et al. (2019) the ρc was used to compare
national, continental and global maps of soil texture in France. It is also a
popular validation statistics in environmental simulation and sensitivity
analysis studies (e.g. Branco et al., 2006; Lim et al., 2018). Chapagain
et al. (2023), for example, used the the ρc to compare model outputs
generated by different crop simulation model structures. While esti-
mating the quality of prediction using adequate validation statistics has
been the purpose of many studies in ecological modelling and in the
broader applied statistics literature (see, for example, Janssen and

Heuberger (1995) and Power (1993)), little has been described of the
statistical properties of the ρc for validating the prediction of environ-
mental models and for assessing the quality of maps.

Lin (1989) proposed that the ρc accounts for both precision and bias
when evaluating the agreement from trial to trial in validation and
measurement reproducibility studies. The ρc evaluates the degree to
which pairs of observations fall on the 45-degree line through the origin
in a scatterplot, addressing the limitation of the linear correlation co-
efficient. In environmental modelling studies, difficulties arise because
the ρc is frequently assumed to provide a single measure of model or map
quality. For example, many of the soil modelling studies using the ρc
have taken thresholds values provided by Viscarra Rossel and Hicks
(2015) to assess the reliability of the predictions (i.e. > 0.90 is an
excellent agreement, 0.80< ρc < 0.90 is a substantial agreement, 0.65<
ρc < 0.8 is a moderate agreement, and values below 0.65 represent poor
agreement), whereas McBride (2005) in the broader environmental
sciences literature suggested different thresholds (i.e. > 0.99 is almost
perfect agreement, 0.95 < ρc < 0.99 is a substantial agreement, 0.90 <

ρc < 0.95 is a moderate agreement, and values below 0.9 represent poor
agreement), and Altman (1990) gave another scale (i.e. 0.81 < ρc < 1 is
a very good agreement, 0.61 < ρc < 0.80 is a good agreement, 0.41 <
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ρc < 0.60 is a moderate agreement, 0.21 < ρc < 0.40 is a fair agreement
and values below 0.2 represent poor agreement). These thresholds,
however, have provoked a general confusion and several mis-
applications of the ρc because the values vary dramatically in response to
the variability in the dataset. While the limitation of the ρc have been
discussed in the literature (e.g. Atkinson and Nevill, 1997), we underline
that in the absence of the critical evaluation, the Lin's ρc could be mis-
used in environmental sciences research. In this note, we highlight three
limitations and undesirable statistical properties of the ρc, which have
been described in the literature and acknowledged by later work of Lin,
such as Lin et al. (2002), but insufficiently recognised by its users. We
illustrate our point with elementary examples using synthetic datasets.

Consider two vectors of values, hereafter referred to as measured and
predicted values and denoted z and ẑ, respectively, with mean z and ẑ
and standard deviation σz and σẑ. The concordance correlation coeffi-
cient (ρc, Krippendorff, 1970; Lin, 1989) quantifies the agreement of two
sets of values by scaling in the range − 1 to 1 the expected value of the
squared perpendicular distance from the diagonal z = ẑ (i.e. the 450 line
through the origin). Lin's ρc is given by:

ρc =
2rσẑσz

σ2z + σ2ẑ + (z − ẑ)2
, (1)

where rσẑσz is the covariance between observed and predicted values
and r is a linear correlation coefficient. Analogous to the Pearson's r
correlation coefficient, a value of 1 indicates perfect agreement and − 1
perfect disagreement. Further aspects of the relationship between r and
ρc is shown in Lin (1989) by reducing Eq. (1) to rCb where Cb is a bias
correction factor defined as:

Cb =

⎛

⎜
⎝
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− 1

, (2)

with

σ* = σẑ

σz
; u =

ẑ − z
̅̅̅̅̅̅̅̅̅σẑσz

√ . (3)

From Eqs. (2) and (3) it follows that Cb = 1 when all the points are on
the diagonal z = ẑ. The more the points deviate from the diagonal line,
the closer Cb is to 0, thus 0⩽Cb⩽1. It is further considered that σ* is a
measure of multiplicative shift, and u a measure of additive shift relative
to a multiplicative shift. The reduction of the concordance correlation
coefficient to rCb makes clear that ρc has always the sign of r, and that
ρc = 0 if r = 0. The ρc is thus a measure of both precision and accuracy,
which are characterised by the r and Cb, respectively. We hypothesise
that this is likely the reason why so many researchers adopted the
concordance correlation coefficient as a single measure of model or map
quality and for making comparisons among studies on different
populations.

First limitation: The ρc does not inform on the individual contribution of
correlation and bias. Consider Fig. 1 with four maps, one of which is a
reference and three are modifications of the reference considered as
prediction. The reference map was obtained through simulation on a
regular grid of 100 × 100 cells. The simulation had a linear trend
superimposed on a Gaussian random field. The trend had an intercept of
5, a slope of 0.1 for the x-axis and a slope of 0.05 for the y-axis. The
Gaussian field had a mean of zero and an exponential covariance func-
tion with a range of 10 and a sill of 10. The three prediction maps have a
very different spatial pattern. The maps and scatterplots between the
reference and prediction maps show that prediction 1 has a pattern
smoother than the reference with a strong underestimation of large
values. Prediction 2 has a systematic overestimation of the reference
values, which becomes more important for larger values. Prediction 3
has an underestimation of small values and a strong overestimation of
large values. In each of these cases, however, the ρc shows the exact
same level of agreement with the reference map despite substantial
differences in the individual contributions of correlation and bias (Pre-
diction 1: ρc = 0.6, r = 0.69,Cb = 0.87; Prediction 2: ρc = 0.6, r = 1,
Cb = 0.6; Prediction 3: ρc = 0.6, r = 0.66,Cb = 0.91). From the ρc and
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Fig. 1. A reference map with three modifications of this map taken as prediction. Predictions 1 has predicted values ẑ1 = − 0.82+ 2.15z − 0.07z2, where z is the
value from the reference map. Prediction 2 is obtained with ẑ2 = 0.74+ 1.31z and prediction 3 with ẑ3 = 0.007(z − 2.248)3. The three prediction maps have the
exact same level of agreement (i.e. ρc = 0.6) with the reference map.

A.M.J.-C. Wadoux and B. Minasny Ecological Informatics 83 (2024) 102820 

2 



without further information one cannot know if the disagreement be-
tween the reference and predicted maps is due to bias or lack of
precision.

Second limitation: The values can not be compared across studies since
the ρc values are sensitive to the variance of the measured data. Consider
Table 1 which shows two datasets, each with a set of 20 measured and
associated predicted values. Measured and predicted values are simu-
lated from a normal distribution with a mean of 20 and standard devi-
ation of 2 in the first dataset. For the second dataset, measured values
were simulated from a normal distribution with the same mean but
standard deviation of 6, and the prediction are obtained by adding up
the simulated measured values to the residuals of the first dataset. The
first dataset has a standard deviation of 1.65 and 1.79 for the measured
and predicted values, respectively, and show little agreement with a ρc
value of 0.21. In the second dataset, the measured values are less ho-
mogeneous with a standard deviation value of 6 but with the same re-
siduals between measured and predicted values as the first dataset. This
time, however, the ρc is 0.93, showing a nearly perfect agreement. This
is only due to the difference in standard deviation between the first and
second datasets.

Third limitation: The ρc is prone to the same problems as other linear
correlation statistics. Fig. 2 illustrates three cases of predictions which
deviate from the line of equality and contain errors. Fig. 2a shows pre-
dictions with a multiplicative shift, Fig. 2b has three predictions with a
(1 − β1)z − β0 deviation from the line of equality, for different values of
β0 and β1, whereas Fig. 2c shows three predictions with negative and
positive systematic shifts from the measurements. All predictions have a
perfect linear correlation with the measurements with a corresponding
value of 1. Note that since in all cases the Pearson's r correlation coef-
ficient is 1 the ρc takes the value of the bias correction factor Cb. It was
shown in the literature (e.g. Willmott, 1984) that the correlation coef-
ficient is insensitive to additive and proportional difference between
measured and predicted values and is not a good measure of prediction
accuracy because it is unrelated to the size of the error (Li, 2017; Will-
mott, 1982). Fig. 1 showed some well-known examples of predictions
having perfect correlation despite having large difference with the
measurements.

The results show that while the ρc is a single index accounting for

both precision and bias, different predictions may lead to the same value
of ρc and one cannot distinguish the individual contribution of bias and
correlation. This has important implication because without further
information (e.g. using the mean error) it is not possible to discern
whether a low value of ρc is due to a systematic deviation or random
error between measured and predicted value (Atkinson and Nevill,
1997).

The ρc is further subject to the same problems as those inherent in the
linear correlation statistics: its value depends on the variability in the
data. For this reason, it is easy to obtain a high value of ρc with het-
erogeneous datasets. This means that the ρc should not be used as a
single validation statistic informing on the relative accuracy of a map or
model over another if the measured data used as reference are not the
same. These limitations also highlight that existing threshold values
interpreting the ρc as “excellent” or “poor”. which are not based on any
statistical or utilitarian basis, are misleading and can lead to wrong
conclusion on the quality of predictions is modelling studies.

While we stress here that the stand-alone use of the ρc is not a reliable
way of assessing model or map accuracy beyond the comparison of maps
or models against a baseline on the same target population, the question
that arises is which validation statistics are efficient to characterise the
output the a prediction model. There has been several attempts (e.g.
King and Chinchilli, 2001; Leal et al., 2019) to correct for the limitations
of the ρc. For example, Vallejos et al. (2020) introduced a new coefficient
to assess the concordance between spatial variables, under different
correlation structures and variances, thus addressing the limitations
explained in the first experiment. While these are worthwhile efforts, no
single validation statistic can represent all aspects of the model or map
quality. We suggest evaluating the quality of model or maps using
complementary indices; an index that is sensitive to the deviation from
the 1:1 line, such as the modelling efficiency coefficient (Janssen and
Heuberger, 1995), as well as indices of bias (e.g. the mean error) and
magnitude of errors (e.g. the mean absolute or squared error) (Willmott,
1984). Several publications advocate for a similar combination of sta-
tistics. Moriasi et al. (2007), for example, recommended the Nash-
Sutcliffe efficiency, the percent bias and the ratio of the root mean
square error to the standard deviation of measured data. Another
example is Caubet et al. (2019), where multiple validation statistics are

Table 1
Two datasets with similar mean but different variability. The two datasets have the same residuals between the measured and predicted values. The first dataset has a
prediction with a ρc = 0.21 (Cb = 0.86 and r = 0.25) while the second has a ρc = 0.94 (Cb = 0.99 and r = 0.95). Simulated example adapted from Atkinson and Nevill
(1997).

First dataset Second dataset

Measurements Prediction Residuals Measurements Prediction Residuals

21 21 0 37 37 0
19 18 1 19 18 1
22 19 3 19 16 3
21 20 1 21 20 1
22 22 0 23 23 0
19 24 − 5 10 15 − 5
18 20 − 2 10 12 − 2
20 21 − 1 24 25 − 1
16 19 − 3 24 27 − 3
19 23 − 4 24 28 − 4
20 22 − 2 15 17 − 2
21 22 − 1 17 18 − 1
21 21 0 18 18 0
20 20 0 12 12 0
21 23 − 2 19 21 − 2
21 18 3 25 22 3
21 24 − 3 11 14 − 3
22 22 0 25 25 0
19 20 − 1 20 21 − 1
17 20 − 3 27 30 − 3

Mean
20 20.95 − 0.95 20 20.95 − 0.95

Standard deviation
1.65 1.79 2.11 6.62 6.39 2.11
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used in combination with the ρc. We suggest that, in addition to using
multiple validation statistics, one can benefit from the statistical rela-
tionship between indices and plot them together in a single figure.
Taylor and solar diagrams (Wadoux et al., 2022) can be used for this
purpose. The solar diagram enables the direct visualization of the ρc
together with the standard deviation of the error, the mean error and the
linear correlation. Such plots can be complemented by a residual or
prediction plot.
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ẑ = z + 0.3(z− z)
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Fig. 2. Plots with between measured and predicted values for three cases, for predictions a) with a multiplicative shift from the measurements, b) obtained through
ẑ = z+ β(z − z), and c) with a systematic over- or under-estimation. The colours indicate different coefficient values.
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