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A B S T R A C T

Machine learning techniques are widely employed to generate digital soil maps. The map accuracy is partly
determined by the number and spatial locations of the measurements used to calibrate the machine learning
model. However, determining the optimal sampling design for mapping with machine learning techniques has
not yet been considered in detail in digital soil mapping studies. In this paper, we investigate sampling design
optimization for soil mapping with random forest. A design is optimized using spatial simulated annealing by
minimizing the mean squared prediction error (MSE). We applied this approach to mapping soil organic carbon
for a part of Europe using subsamples of the LUCAS dataset. The optimized subsamples are used as input for the
random forest machine learning model, using a large set of readily available environmental data as covariates.
We also predicted the same soil property using subsamples selected by simple random sampling, conditioned
Latin Hypercube sampling (cLHS), spatial coverage sampling and feature space coverage sampling. Distributions
of the estimated population MSEs are obtained through repeated random splitting of the LUCAS dataset, serving
as the population of interest, into subsets used for validation, testing and selection of calibration samples, and
repeated selection of calibration samples with the various sampling designs. The differences between the
medians of the MSE distributions were tested for significance using the non-parametric Mann-Whitney test. The
process was repeated for different sample sizes. We also analyzed the spread of the optimized designs in both
geographic and feature space to reveal their characteristics. Results show that optimization of the sampling
design by minimizing the MSE is worthwhile for small sample sizes. However, an important disadvantage of
sampling design optimization using MSE is that it requires known values of the soil property at all locations and
as a consequence is only feasible for subsampling an existing dataset. For larger sample sizes, the effect of using
an MSE optimized design diminishes. In this case, we recommend to use a sample spread uniformly in the feature
(i.e. covariate) space of the most important random forest covariates. The results also show that for our case
study, cLHS sampling performs worse than the other sampling designs for mapping with random forest. We stress
that comparison of sampling designs for calibration by splitting the data just once is very sensitive to the data
split that one happens to use if the validation set is small.

1. Introduction

Conventional Digital Soil Mapping (DSM) employs geostatistical
techniques to predict a continuous soil property at unobserved locations
from measurements of this property at a finite number of sampling
locations. Prediction is usually improved by exploiting the quantitative
empirical relationship between the soil property and one or several
environmental covariates. This leads to kriging with external drift, a
basic technique in geostatistics, in which a soil property is modelled as
a sum of a linear combination of covariates and a zero mean, spatially
auto-correlated stochastic residual. Kriging models the soil property in

a comprehensive, statistically sound way, but has several limitations
(Webster and Oliver, 2007). First, it typically assumes that the residual
is normally distributed, stationary and isotropic. Second, it considers
that the model of spatial variation (i.e. the variogram) is estimated
without error. Finally, the relation between the soil property and the
covariates is usually assumed to be linear, and difficult to model when
using a large number of cross-correlated covariates.

As an alternative, in recent decades (supervised) machine learning
(ML) techniques have been applied for spatial prediction and DSM. ML
refers to a large class of non-linear data-driven algorithms, originally
developed for data mining and pattern recognition purposes. But ML is
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increasingly being used in other quantitative fields, such as in pre-
dictive soil mapping. ML techniques do not rely on rigid statistical as-
sumptions about the distribution of the soil property and can handle
numerous and correlated covariates as predictors, if at least a large
calibration dataset is available. Examples on the use of ML techniques
for DSM are Henderson et al. (2005) for mapping multiple soil prop-
erties at national-scale using decision trees, Behrens et al. (2005) for
predicting soil units using artificial neural networks, and Grimm et al.
(2008) to map soil organic carbon using random forest (RF). In this
study we use the latter technique, whose use for soil mapping was re-
cently formalized in Hengl et al. (2018).

Mapping requires calibrating a model using a sample from the target
population. In consequence, the map accuracy is partly determined by
the sample size and spatial locations of the sampling units with mea-
surements of the target property that are used to calibrate the model.
Various sampling designs are potentially suitable, depending on the
intended mapping technique (Brus, 2019). In most cases, the soil is
mapped using a known model of spatial variation (e.g. a variogram
when using kriging). In this context, it is sensible to select a sample
whose units are spread evenly throughout the area. This can be
achieved by spatial coverage sampling (Royle and Nychka, 1998;
Walvoort et al., 2010). If one assumes that the soil property is linked to
environmental covariates, a robust strategy is to ensure that the mea-
surements are also uniformly spread in the feature (i.e. covariates)
space. This can be achieved using conditioned Latin Hypercube sam-
pling (cLHS) (Minasny and McBratney, 2006) or feature space coverage
sampling using the k-means (Hartigan and Wong, 1979) algorithm. The
spatial coordinates can be added to the set of covariates so as to ensure
a spread in both geographical and feature space. Brus (2019) noted that
there is no single best sampling design, and that the best design depends
on the technique used for mapping.

If the mapping technique is known beforehand, it is judicious to
optimize a design for the intended use. In a model-based setting, we
obtain an estimate of the prediction error variance, which can be
minimized. As mentioned, for mapping with ordinary kriging this
leads to a fairly uniform spread of the measurements in the geo-
graphic space, which can be obtained using a spatial coverage design
(Brus et al., 2007). If one or several covariates are used as a trend in
the kriging model, the optimized design shows a spread of the mea-
surements in both geographic and feature space (Heuvelink et al.,
2006). For mapping using ML techniques with covariates, Brus (2019)
recommends to select the sample using feature space coverage sam-
pling (FSCS) or cLHS. Both cLHS and FSCS aim for an even sampling
density in the multivariate feature space, but in different ways. In
cLHS it is done through minimization of a criterion which is a func-
tion of the marginal distributions and correlation matrix of the cov-
ariates using spatial simulated annealing, in FSCS it is achieved
through minimization of a feature space distance criterion between
sampling and prediction points using the k-means algorithm. This
might be advantageous for ML techniques, which rely heavily on non-
linear relations, but this has not yet been confirmed by experimental
results. In machine learning, we do not have a model-based estimate
of the prediction error variance. Hence optimizing the sampling de-
sign is not straightforward, although it is possible to optimize the
design using a universal prediction accuracy measure, such as the
mean square error (MSE) of the prediction. To the best of our

knowledge, little has been investigated on optimal sampling design
for mapping using random forest.

A relevant contribution was made in Tuia et al. (2013) which op-
timized the allocation of new climatological stations in a case study in
Austria. In this study support vector regression and active learning were
used to derive the optimal locations of new stations so as to select the
most important sampling units to be included in the sample, i.e. units
that are used as support vectors. However, active learning is a se-
quential re-design technique which is appropriate to improve an al-
ready-calibrated ML model. Tuia et al. (2013) provides little insight
into where to select the sampling locations when there is no prior ML
model. In consequence, the conclusions of this study are of little use for
practitioners who wish to map soil properties using machine learning.

The objective of this study is to investigate what makes a design
optimal (sample size and sampling locations) for mapping using RF. To
achieve this, we (i) estimate the population MSE with various sampling
designs (viz. simple random sampling, cLHS, spatial coverage sampling
(SCS), feature space coverage sampling (FSCS) and MSE optimized); (ii)
statistically test the differences in the medians of the MSE sampling
distributions of these designs through repeated selection of samples
with a given design; and (iii) reveal the characteristics of the optimal
design by analyzing the spread of the sampling locations in both geo-
graphic and feature space.

2. Materials and methods

2.1. Case study and data

We used the freely available soil database collected withing the
framework of the European Land Use/Cover Area frame Statistical
Survey (LUCAS) (Tóth et al., 2013). The LUCAS dataset is a sample of
N=19,790 georeferenced topsoil( 0–30 cm) measurements of thirteen
soil properties spanning 23 European countries. The sampling density
varies between 11 and 77 measurements per 10,000 km2 with an
average of 48. The sample was collected by a two-stage systematic
sampling design (Gallego and Delincé, 2010) using a stratification
based on seven land cover classes. The resulting sample is spread fairly
uniformly in space and within the different land cover classes. A map of
the sampling locations is provided in Orgiazzi et al. (2018, Figure 1a).
We used as target soil property the soil organic carbon (SOC) con-
centration in g kg−1 as measured by an automated vario MAX CN
analyzer (Elementar Analysensysteme GmbH, Germany) (Tóth et al.,
2013). In this study, we treat the N LUCAS topsoil SOC measurements
as our population of interest. This means that we ignore that the LUCAS
units are a sample from the true area of interest, in our case the Eur-
opean countries included in the survey.

In addition to the LUCAS SOC sample, we used a set of 197 readily
available continuous environmental variables at 1 km× 1 km re-
solution as covariates. The list of covariates is given in Hengl et al.
(2017).

2.2. Random forest

Random forest (RF) is an ensemble machine learning method based
on decision trees (Breiman, 2001). A single decision tree is built by
repeating a binary recursive partitioning of the input training data. In
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the root node, the training data are grouped into a single partition. All
possible binary partitions of the training data are evaluated using a
splitting metric (Louppe, 2014). The binary split that has the smallest
metric is selected. The newly created partitions undergo the same
procedure, until a stopping criterion, the minimum node size, is met.
The final prediction for continuous variable is taken as the average of
the values at the end of nodes of the decision tree.

Breiman (1996) introduced the bagging technique. Bagging stands
for bootstrap and aggregating, and aims at reducing the prediction
error variance by building an ensemble of regression trees. A large
number of trees is built based on bootstrap samples of the training
data. All tree predictions are aggregated through averaging, and these
averages are taken as the final predictions. The RF algorithm elabo-
rates on this and introduces an additional random perturbation
during the splitting of a tree (Breiman, 2001). In each split, the
partitioning considers only a subset of size mtry from the original set
of covariates.

The calibration of the RF model is therefore based on three user-
defined parameters. The first is the number of trees ntree. To avoid
computational load in fine-tuning ntree for each model, we fixed ntree
=200, as a compromise between accuracy and computational effi-
ciency. Lopes (2015) showed that in many cases 150 trees is sufficient
to obtain stable results, in particular when the number of covariates is
smaller than the calibration sample size. The second parameter,mtry, is
the number of covariates to randomly select at each split. By default, we
usedmtry as set to the rounded down square root of the total number of
covariates. The third parameter is the minimal terminal node size
(nodesize), which controls the minimum number of training data re-
quired to continue the process of tree growth. Parameter nodesize was
set to its default value of 5.

2.3. Sampling designs

We compared five common spatial sampling designs.
Random: Simple random sampling without replacement (Cochran,

1977) is the simplest form of random sampling technique which does
not require any prior knowledge on the soil property spatial variation.
In simple random sampling, every unit of the population has equal
probability of being selected and sampling units are selected in-
dependently. We used the sample function from the base package in
the R language (R Core Team, 2018) for selecting simple random
samples.

Spatial Coverage Sampling (SCS): A SCS design aims at dispersing the
units throughout the study area as uniformly as possible (Royle and
Nychka, 1998). Coverage designs are created by minimization of a
criterion that is a function of the distance between sampling and pre-
diction locations. Brus et al. (1999) proposed to compute the Mean of
the Squared Shortest Distance (MSSD), denoted MSSDG hereafter, be-
tween sampling locations and the centre cells of a fine prediction grid as
criterion to obtain a spatial coverage design. This criterion can be
minimized by the fast k-means clustering algorithm. We implemented it
with the R base function kmeans, using the spatial coordinates of the
nodes of a fine discretization grid of the whole study area as clustering
variables. Since our population of interest is the LUCAS dataset, the

selected sampling units are the LUCAS points closest (in geographic
distance) to the centres of the geographic clusters.

Feature Space Coverage Sampling (FSCS): A FSCS design follows the
same principle as a spatial coverage design. However, in this case dis-
tances are measured in feature space instead of geographic space. Since
covariates can have very different scales, it is important to standardize
them (zero mean and unit variance) so that the criterion to be mini-
mized becomes the Mean Squared Shortest Standardized Distance
(MSSSD) (Brus, 2019), denoted MSSDF hereafter. Sampling the centre
of the k-means clusters ensures a uniform spread of the units in the
multi-dimensional space of the covariates. We derive a FSCS design
using the base R function kmeans. Similar to SCS, the LUCAS points
closest (in standardized features space) to the centres of the clusters are
used as sampling points.

Conditioned Latin Hypercube Sampling (cLHS): cLHS (Minasny and
McBratney, 2006) is a stratified random sampling procedure. For each
covariate, n marginal strata are defined using the quantiles of the cu-
mulative frequency distribution, with n being the sample size. Next, an
optimization procedure minimizes the weighted sum of two compo-
nents (O1 and O3) so that each covariate contains one unit per stratum
in the multi-dimensional feature space (O1) and the correlation between
the covariate values in the sample and in the population is preserved
(O3). Note that we do not use component O2 because our case study has
no categorical covariates. In cLHS, the covariate marginal distribution
of the sample is close to that of the population (Brus, 2019). Note that
in this study cLHS designs were based on the 20 most important cov-
ariates for RF. These covariates were derived from a RF model cali-
brated using all LUCAS topsoil OC data (about 20,000 units). We refer
to this design as the cLHS (20) design, and compare it to the FSCS
optimized on the same 20 most important RF covariates (FSCS (20)).
The most important covariates of the RF model are defined using the
Gini impurity index (Nembrini et al., 2018) as implemented in the
ranger package (Wright et al., 2017) in R. We used the R package clhs
(Roudier, 2018) to obtain a cLHS sample from the population. The
default implementation in the clhs package assigns equal weights to the
O1 and O3 components.

MSE optimized: In this case an optimized design is obtained by
minimization of the MSE between the predicted and measured SOC in
the independent test set, from a RF model whose parameters are esti-
mated using a calibration set. The choice of the minimization criterion
is discussed more extensively in the Discussion. The minimization is
achieved by Spatial Simulated Annealing (SSA) (Van Groenigen and
Stein, 1998; Wadoux et al., 2019). For each iteration in SSA, a RF model
is built, which is subsequently used to predict at the test set locations. If
the MSE becomes smaller, the proposed calibration sample is accepted,
otherwise it is accepted with a probability that decreases during the
optimization. We used the function optimUSER from the R package
spsann (Samuel-Rosa, 2017). The total number of SSA iterations was
set to 50 times the sample size.

Each of the five sampling designs described above is evaluated by
computing the MSE between the SOC prediction and observation for an
independent validation set. Computation of a population MSE value is
detailed in the next section.
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2.4. Estimation of the population MSE

The procedure for estimating the population MSE, for a given
sampling design and sample size n=100, 200, 500 and 1000, is given
as follows:

Hereafter, the distribution of the R estimates of the population MSE as
obtained using this procedure for a given sampling design type and cali-
bration sample size n is referred to as the “MSE sampling distribution”.
Two sources of randomness are involved in the generation of the random
variable. The first source of randomness is the repeated selection of cali-
bration samples with a given sampling design. With each of the five
sampling design types multiple calibration samples of a given size are
selected. Each calibration sample is associated with a population MSE. So
the population MSE is not a fixed quantity but a random variable. Simple
random sampling is a random sampling design, so it is evident that with
this design type multiple samples can be selected. SCS and FSCS using k-
means are not random sampling designs. K-means is a deterministic al-
gorithm, which means that, given an initial sample the final optimal
sample is fixed. However, if we select the initial sample randomly, re-
peated selection of initial samples will result in different final samples. In
practice, multiple initial samples are selected, and the sample with the

smallest MSSD is kept. With a finite number of initial samples, repeated
sampling using different seeds still will result in different optimized
samples. For similar reasons, the cLHS and MSE optimized designs are also
not fully deterministic and optimizing the calibration sample for these
sampling design types will not always yield the same result

The second source is the random splitting of the LUCAS dataset into
a validation subset and a subset from which the calibration sample is
selected (calibration sampling subset). For a given calibration sample,
the population MSE associated with this calibration sample is not
known without error, but is estimated from the validation sample, in-
troducing a random sampling error. The R estimates are independent
and identically distributed (iid) realizations of the random variable
“population MSE”. Thus, the mean of the R estimates is an unbiased
estimate of the expected value of the population MSE, while their
standard error characterizes how close this mean is to the true mean
(expectation) of the population MSE.

The values of R, K, L andMwere chosen based on the computational
load and degree of randomness of each design. When a design is more
random, larger values of R, L and M are preferred. We chose R=10 for
all designs except for the MSE optimized design, where we used R=5.
K and L were set to 5 for all designs while M=20 for the random and
SCS designs, M=10 for the FSCS design and M=1 for the cLHS and
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MSE optimized designs. We used M=1 for the cLHS and MSE opti-
mized design because these designs have a high computational load,
while their randomness is modest.

If the K, L and M MSE estimates are not averaged and all
R× K× L×M individual estimates of the population MSE are kept,
the procedure above yields the distribution of the MSE that is obtained
when one uses simple data splitting to select a single calibration dataset
and a single validation dataset (a commonly used approach in DSM).
The width of this distribution shows how uncertain the outcome of a
data splitting validation procedure is, for a given calibration sample
size and a given validation sample size.

2.5. Statistical hypothesis testing

Given the R population MSE estimates for each design, we tested for
all pairs of designs and all calibration sample sizes n whether the
medians of the distributions are significantly different using the Mann-
Whitney U test (Wilcoxon rank-sum test) (Mann and Whitney, 1947).
The Mann-Whitney U test is a non-parametric test of the null-hypothesis
that two distributions have the same median. Thus, under the null
hypothesis a randomly selected value from one of the distributions has
50% chance of being smaller or greater than a randomly selected value
from the other distribution. Contrary to the two independent samples t-
test the Mann-Whitney U test does not require the normality assump-
tion of the distributions that are compared. Significant differences be-
tween MSE sampling distributions are characterized by a significance
threshold fixed at a p-value smaller or equal than 0.05.

2.6. Diagnostics of the designs

Sampling designs are not only evaluated by the resulting MSE, but
also by the spread of the samples in the geographic and feature space.
This is done with the aim to reveal the characteristics of the designs, in
particular the MSE optimized design, which may help to design future

surveys. Thus, all sampling designs are evaluated in terms of all criteria,
not just MSE, but also MSSDG, MSSDF and O1+O3 as minimized in
cLHS.

3. Results

3.1. MSE sampling distribution

Fig. 1 shows the estimated expectation of the population MSE (es-
timated by the average of the R estimates of population MSEs) with its
standard error for all combinations of sampling designs and sample
sizes. As expected, the MSE of the optimized design is smaller than for
the other designs. This is particularly true for small sample sizes (e.g.
100 units) where the MSE optimized design has an expected MSE that is
about 10% smaller than that of a simple random sampling design. For
small sample sizes, simple random sampling and cLHS have the largest
expected MSE (the medians are 7208 and 7174 (g kg−1)2, respectively)
and FSCS has a somewhat smaller expected MSE (median is
7090 (g kg−1)2). This pattern is preserved with larger sample sizes, but
the differences in expected MSEs become negligible as the sample size
increases. For instance, the difference in expected MSE between designs
is smaller than 100 (g kg−1)2 for a sample size of 1000. Note that with
cLHS for all sample sizes tested, the sampling distribution of MSE has a
large median value, about equal to that of simple random sampling.

Fig. 2 shows the individual estimated MSE values (R× K× L×M
MSE values) derived from the experimental design of Section 2.4, for all
combinations of sampling designs and sample sizes. Fig. 2 shows how
variable the outcome of a validation analysis can be in data splitting if
this is done only once. The variability of the estimated MSE values is
large and the MSE distributions for a given sample size overlap for all
sampling designs tested. The MSE distribution is clearly narrower for
MSE optimized designs and slightly more narrow for cLHS, compared to
that of simple random sampling, SCS and FSCS. Note that the variability
also depends on the validation sample size, which was about 4000 in

Fig. 1. Estimated expectation and standard error of the population MSE as derived with the experimental design of Section 2.4 but without averaging over K, L and
M, for each of the tested sampling design types and for different calibration sample sizes. FSCS (20) and cLHS (20) refer to designs computed on the 20 most
important covariates for the RF model, calibrated using all LUCAS topsoil OC data (about 20,000 units).
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this study. In many studies, the validation sample size will be much
smaller than that, and this will increase variability even more. This is
discussed more extensively in the Discussion.

3.2. Statistical hypothesis testing

Table 1 shows the result of the statistical hypothesis testing. Sam-
pling designs with median MSE that are not significantly different at
α=0.05 have the same letter. The median MSE of the cLHS design is,
for all sample sizes tested, not significantly different from the median
MSE of the simple random design. In contrast, the median MSE based
on the MSE optimized design is always significantly different from
those of other designs. This is an expected result given that the corre-
sponding MSE standard errors shown in Fig. 1 do not overlap. For
sample size 100, the median MSE of the cLHS design is not significantly

Fig. 2. Boxplots of individual population MSE estimates (R× K× L×MMSE estimates per boxplot) derived from the experimental design of Section 2.4, for each of
the tested sampling designs and for different calibration sample sizes. FSCS (20) and cLHS (20) refer to designs computed on the 20 most important covariates for the
RF model, calibrated using all LUCAS topsoil OC data (about 20,000 units).

Table 1
Mann-Whitney U test results for differences in median MSE obtained with
random forest models calibrated with samples of various designs and sample
sizes. Common letters indicate non-significant differences at significance level α
of 0.05.

Sample size

100 200 500 1000

Simple random a a a a
cLHS (20) a b a a a
SCS b b b b
FSCS c c b c
FSCS (20) c d c d
MSE optimized d e d e

Fig. 3. Boxplots of MSSDG for all sampling designs and sample sizes.

A.M.J.-C. Wadoux, et al. Geoderma 355 (2019) 113913

6



different from that of the SCS design, and the median MSE between
FSCS designs using all or the 20 most important covariates are not
significantly different. For sample size 500, the median MSE of the SCS
design is not significantly different from that of the FSCS design using
all covariates. Overall, it appears that parameters R, L andM were large
enough to detect significant differences between designs.

3.3. Diagnostics of the designs

Fig. 3 shows the distribution of the MSSDG for all designs and
sample sizes. Because the SCS design is optimized for this criterion it
has always the smallest median MSSDG compared to other designs, for
the same sample size. FSCS designs (optimized on all or the 20 most
important covariates) have relatively small MSSDG values. This may be

because the spatial coordinates are also included as covariates and
hence used to optimize these designs. The simple random and MSE
optimized designs have the largest MSSDG values and also the largest
MSSDG variability (standard deviation of 7.289 and 1.5110 m2 for a
sample size of 100, respectively). The MSE optimized design has on
average the least uniform spread in geographic space, as shown by the
median MSSDG. This is the case for all sample sizes, even though the
differences in MSSDG among designs are negligible for large sample
sizes.

Figs. 4 and 5 show the MSSDF distributions, computed using all the
covariates or a subset containing the 10 most important covariates of
the RF models, respectively. Both figures show, as expected, that FSCS
designs have the smallest MSSDF compared to other designs. All other
sampling designs have similar MSSDF distributions. A similar pattern is

Fig. 4. Boxplots of the MSSDF for different sample sizes and sampling designs.

Fig. 5. Boxplots of the MSSDF, based on the ten most important covariates of each design.
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observed in Fig. 5: all designs (except FSCS designs) have similar MSSDF

distributions. Note that simple random and SCS designs have a very
large spread in the MSSDF, while the MSE optimized design has nar-
rower MSSDF distributions and very few outliers.

Fig. 6 shows the distribution of the O1+O3 cLHS criterion com-
puted for each of the designs and sample sizes. Note that in Fig. 6 the
elements O1+O3 are not computed as sums but as means. This is
discussed more extensively in the Discussion. Since a cLHS design is
optimized for this criterion, it has the smallest values for all sample
sizes. For large sample size, the simple random sampling design is al-
most equivalent in terms of the cLHS criterion. The FSCS designs (using
all or the 20 most important covariates) have always the largest value
of the cLHS criterion.

Fig. 7a indicates how often a sampling location is selected in the MSE
optimized design, where red colours correspond to a case where a sam-
pling location is selected more often than would be expected under a
simple random sampling design and blue colours indicate the opposite.
Fig. 7b shows the proportion of sampling locations used for calibration of
the MSE optimized design. Red colours indicate that locally, a relatively
large number of sites were used for calibration, while blue colours indicate
that relatively few sites in the local neighbourhood were used for cali-
bration of the MSE optimized design. Areas with fewer than five LUCAS
sites within the local neighbourhood (100 km circular radius) were
masked out. Fig. 7b shows that the MSE optimized design leads to a fairly
high relative density in a geographic band spanning from France to Po-
land. Germany and Denmark have a high relative density across their
entire country. Great Britain, Ireland, southern and northern Europe tend
to have a lower relative density of sampling units included in the MSE
optimized design, even though they might locally have a very high absolute
density of sampling locations (e.g. North of Madrid).

4. Discussion

4.1. Impact of sampling designs on prediction accuracy

The sampling design had a significant impact on the accuracy of
random forest predictions. In the case study mapping topsoil OC using
RF in Europe, the MSE optimized design had the smallest mean squared
prediction error, as shown in Fig. 1. This is because the MSE optimized
design was optimized for this purpose, by minimizing the MSE of the
test set. All other designs reach substantially higher MSE value than the
MSE optimized design. However, the MSE optimized design can be used

only when subsampling an existing dataset with known values of the
target soil property at all locations. In other words, it may be used in a
case where thinning of an existing sampling network is required, but
not in a case where one needs to design a sampling scheme from
scratch, such as in a reconnaissance survey. In this case, it is best to use
a FSCS design which, for the case study, had the smallest prediction
MSE of all other designs tested. This is not surprising because predic-
tions made by machine learning methods rely on non-linear relation-
ships with covariates, and estimation of these relationships benefits
from a spread of the sampling units in feature space, as noted by Brus
(2019). To our surprise the MSE values obtained with cLHS design were
large (Fig. 1) and not statistically different from those obtained using
simple random sampling (Table 1). This is discussed more extensively
later in this Discussion. In spite of the differences in MSE between de-
signs for small sample sizes, the MSE between designs for large sample
sizes (in our case study larger than 1 unit per 4159 km2) are negligible.
This result applies to our case study using the LUCAS dataset as the
population of interest, but is likely also valid more generally: increasing
the sample size reduces the MSE differences between designs because
the selected sample covers all cases sufficiently well.

4.2. How to compare calibration sampling designs?

Several studies (e.g. Schmidt et al., 2014; Ng et al., 2018) have
investigated the effect of the sampling design on the resulting map
accuracy or calibrated model. In these studies one sample was selected,
which was randomly split into a validation sample and a calibration
sample. While this is a common approach in soil mapping studies, Fig. 2
shows that it is delicate to draw conclusions based on a single data split
because of the large variability of MSE estimates and the large overlap
of the MSE distributions of the various sampling design types for a
given sample size. In other words, the conclusion that calibration design
type A is better than design type B obtained with a given data split is
very sensitive to the data split that happened to have been used. Fig. 2
shows that a different conclusion might well have been obtained if a
different split had been used. Note also that the results obtained in
Fig. 2 depend on the size of the calibration and validation sets. In our
case study, the validation set was large compared to the population size.
One can expect that in most practical cases, where a smaller validation
set is used, the distribution of the population MSE will be even wider
than shown in Fig. 2. The effect of the validation set size on the dis-
tribution of the population MSE has not been investigated in this study.

Fig. 6. Boxplots of the O1+O3 cLHS criterion for each of the sampling designs and sample sizes. The elements O1+O3 are computed as means.
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So, in studies comparing calibration sampling designs, it is more useful
to compare these designs on the basis of the MSE sampling distribution
obtained by repeated selection of calibration samples, instead of on the
estimated MSE obtained with a single calibration and a single valida-
tion sample. However, if the validation set size is sufficiently large, the
MSE estimate computed on a validation set from a single split will still
be close to the true MSE.

4.3. Design diagnostics

In practice we cannot obtain an MSE optimized design because this
requires that the target property is known at all locations in the study
area. This is why it is useful to interpret and diagnose the MSE opti-
mized designs obtained in the case study, because if general patterns
can be derived then these may be used to design spatial sampling de-
signs for DSM using RF. Diagnostics on the MSE optimized designs re-
veal that RF does not benefit much from a spread of the sampling units
in geographic space (Fig. 3). One possible reason is that spatial location
is ignored during the RF modelling process (Hengl et al., 2018) and in
other machine learning techniques (Behrens et al., 2018). Figs. 4 and 6
show that, in addition, RF neither benefits much from a spread of the
sampling units in the feature (i.e. covariate) space, nor from reprodu-
cing the marginal distributions of the covariates. This is unexpected
because many studies (e.g. Castro-Franco et al., 2015; Domenech et al.,

2017; Brus, 2019) suggested that spread in the feature space is crucial.
In fact, it is more subtle than that. We learn from Fig. 5 that the im-
portance of the covariates used in the RF model must be taken into
account as well. This is an important finding of this study: the predic-
tions made by a RF model benefit from a design spread uniformly in the
space spanned by the most important covariates. We acknowledge that
this finding is based on a single case study and needs to be tested in
further research. If this finding is confirmed by future studies, one can
derive practical recommendations to design a soil survey for mapping
with RF: (i) determine what are the most important covariates, either
using a legacy sample, previous studies, pedological expertise or a two-
stage sampling approach; and (ii) optimize the design using coverage
sampling in covariate space for the important covariates (possibly using
weights derived from the importance).

4.4. Conditioned Latin Hypercube sampling design

While it was shown above that RF benefits from a uniform spread of the
sampling locations in the feature space of the most important covariates,
predictions based on the cLHS design were on average not more accurate
than those based on a simple random sampling design, and even worse
than predictions obtained using all other designs. Sampling the marginal
distribution of the covariates as implemented in cLHS was not a useful
strategy for mapping with RF in this study. The criterion values in Figs. 4

Fig. 7. Number of times a sampling location is selected by the MSE optimized design (a). Red colours indicate that the location is selected more often than one would
expect under a simple random sampling design, blue colours indicate that it is selected less often than expected under simple random sampling. Ratio of number of
sampling sites used for calibration of the MSE optimized model and total number of sampling sites, as computed in a circular neighbourhood with radius 100 km (b).
Red colours indicate regions for which sampling units are often included in the MSE optimized design, blue colours refer to regions for which sampling units are less
often included in the MSE optimized design.

A.M.J.-C. Wadoux, et al. Geoderma 355 (2019) 113913

9



and 6 show that the cLHS and FSCS designs are very different in the way
they spread the sampling units in feature space. This had a major impact on
the resulting prediction accuracy in this study. While several studies (e.g.
Schmidt et al., 2014; Contreras et al., 2019) showed that using RF in
combination with cLHS gives the most accurate prediction, we showed that
in our case cLHS performed worse than other sampling designs exploiting
covariates for mapping with RF. While the results obtained by Schmidt
et al. (2014) and Contreras et al. (2019) are possible outcomes (as shown
by Fig. 2), these could have been incidental results if their validation
sample size was small. To judge whether the validation metrics are suffi-
ciently accurate, it is best to compute confidence intervals of the validation
metrics, which is possible only if the validation sample is collected using
probability sampling (Brus et al., 2011). Confidence intervals are needed to
be able to interpret the true value of the validation statistics and evaluate
whether differences in prediction accuracy between different sampling
designs for mapping are statistically significant. Note that in this study we
used the cLHS implementation from the R package of Roudier (2018)
following the Minasny and McBratney (2006) paper, where the O1 and O3

components are computed as sums, not as means. The resulting criterion is
therefore affected by the magnitude of the O1 and O3 components. This
may cause an unbalance between the relative importance of O1 and O3. To
solve this problem, other implementations (e.g. Samuel-Rosa, 2017) com-
pute O1 as the mean of the absolute deviations between the marginal strata
sample size and targeted sample size, while O3 is computed as the mean of
the deviations over all off-diagonal entries of the correlation matrix. Taking
the latter into account might improve the performance of the cLHS design.
However, we did not consider it in this study.

4.5. Optimization criteria

In our case study, the MSE optimized design was derived based on
the MSE between predicted and measured SOC values in the test da-
taset. The MSE is a universal criterion which can be computed for any
mapping method, also in a case where we do not have a model-based
estimate of the prediction error variance. If a model-based estimate of
the prediction error variance is available, we can use a function of the
prediction error variance as minimization criterion. Obvious candidates
for such function are the spatial mean (Brus and Heuvelink, 2007) and
maximum (Van Groenigen et al., 1999) prediction error variance. For
the RF model used in the case study, the prediction error can be
quantified by Quantile Regression Forest (QRF) (Meinshausen, 2006),
for instance using the width of the 90% prediction interval. We ex-
plored this and used the average width of the QRF 90% prediction in-
terval over the study area (i.e. the 23 EU countries included in this
study) as a minimization criterion. However, we observed that the
sampling units of the optimized design had a narrow SOC distribution
and small SOC variance. These sampling units were selected because
this resulted in narrow QRF predicting intervals and hence a small
criterion value. As a result, validation of the quantified uncertainty (e.g.
using accuracy plots Deutsch, 1997; Wadoux et al., 2018) showed that
the uncertainty was systematically and severely underestimated. Thus,
we did not pursue this any further.

4.6. Sampling for other machine learning techniques

Finally, there is a need to further investigate whether a design that
is optimal for RF modelling is also optimal for other machine learning
models. Our results were obtained for a tree-based model. We hy-
pothesize that a design that is optimal for RF may also be efficient for
modelling and predicting using other tree-based models (e.g. CART;
Breiman, 2017), because they are comparable in their basic structure
and splitting metrics. Note also that in our study we investigated
sampling design for mapping a single soil property. This could be ex-
tended to sampling design optimization for multivariate soil mapping
using random forests. Sampling to support other machine learning
models (e.g. support vector machine or deep neural network)

introduces additional considerations and also deserves further in-
vestigation. For example, Pozdnoukhov and Kanevski (2006) and Tuia
et al. (2013) optimized a network for mapping using support vector
machine. They specifically aimed at minimizing the “risk” of selecting
new sampling units that do not have a valuable contribution to the
model (by becoming support vectors). Recently, Wadoux (2019)
showed how a deep neural network can be used for soil mapping, and
how the minimized loss function can be modified to include additional
information (e.g. to quantify the prediction uncertainty). Formulating a
loss function that searches for optimal units to be measured using the
feature (i.e. covariates) space has been tackled by MacKay (1992). How
much a design optimal for a neural network model would differ from
that of a RF model requires further study. This would certainly make a
valuable contribution to future DSM studies.

5. Conclusion

We computed an MSE optimized design for mapping with RF and
compared it to several commonly used sampling designs. We compared
the designs in terms of both prediction accuracy and spread of sampling
units in geographic and feature space. In a case study, we used the
LUCAS topsoil OC measurements as our population of interest, from
which subsamples were collected. From the Results andDiscussion we
draw the following conclusions:

• An MSE optimized design provides the smallest mean squared pre-
diction error. However this is feasible only in case of subsampling an
existing dataset with known values of the target soil property at all
locations.
• In terms of accuracy, a sample selected by feature space coverage
sampling of the most important covariates had the closest match
with the MSE optimized design.
• Comparison of calibration sampling designs on the basis of the es-
timated population MSE obtained by splitting the data only once
into a calibration and validation subset is prone to incidental results
if the validation sample size is small. One should compute con-
fidence intervals of the validation metrics and verify that these are
sufficiently narrow. Narrow confidence intervals can be obtained by
repeatedly splitting the data into a calibration and validation subset
(this study) or by using a sufficiently large validation set.
• Preferably calibration sampling designs are compared on the basis of
estimates of the “expectation” of the population MSE. Performance
differences between sampling design types have no real meaning
until these are shown to be statistically significant.
• For large sample sizes, the differences between prediction accuracies
of different designs become negligible. In our continental scale case
study, this was for a sampling density greater than 1 sampling unit
per about 4000 km2.
• In our case study, predictions based on a cLH sample had the poorest
prediction accuracy, similar to that of predictions based on a simple
random sample. There is need for further observational research to
investigate whether conditioned Latin Hypercube sampling (cLHS)
design is efficient for mapping using RF.
• Diagnostics on the MSE optimized design showed that for RF the
optimal sampling design is not achieved by a uniform spread of the
sampling units in the geographic and/or feature (i.e. covariate)
space, nor from reproducing the marginal distributions of the whole
set of covariates.
• Further diagnostics of the MSE optimized design showed that the
importance of the covariates used in the RF model must be taken
into account when optimizing the spatial sampling design. RF ben-
efits from a spread of the sampling units uniformly in the feature
space of the most important covariates of the RF model. The most
important covariates can be selected using a sample from a re-
connaissance survey, by pedological expertise or by a two-stage
sampling strategy.
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