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Abstract

In digital soil mapping, machine learning (ML) techniques are being used to

infer a relationship between a soil property and the covariates. The informa-

tion derived from this process is often translated into pedological knowledge.

This mechanism is referred to as knowledge discovery. This study shows that

knowledge discovery based on ML must be treated with caution. We show

how pseudo-covariates can be used to accurately predict soil organic carbon in

a hypothetical case study. We demonstrate that ML methods can find relevant

patterns even when the covariates are meaningless and not related to soil-

forming factors and processes. We argue that pattern recognition for prediction

should not be equated with knowledge discovery. Knowledge discovery

requires more than the recognition of patterns and successful prediction. It

requires the pre-selection and preprocessing of pedologically relevant environ-

mental covariates and the posterior interpretation and evaluation of the recog-

nized patterns. We argue that important ML covariates could serve the

purpose of providing elements to postulate hypotheses about soil processes

that, once validated through experiments, could result in new pedological

knowledge.

Highlights
• We discuss the rationale of knowledge discovery based on the most impor-

tant machine learning covariates
• We use pseudo-covariates to predict topsoil organic carbon with random

forest
• Soil organic carbon was accurately predicted in a hypothetical case study
• Pattern recognition by random forest should not be equated to knowledge

discovery
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Machine learning (ML) techniques are popular for map-
ping soil properties using numerous spatially explicit
covariates and a set of point-measured values of the prop-
erty of interest (Behrens et al., 2018; Hengl., Nussbaum,

Wright, Heuvelink, & Gräler, 2018). The use of environ-
mental information to map soil properties has also been
the basis of traditional soil surveys and digital soil map-
ping (DSM) exercises using more traditional, geostatistical
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methods (McBratney, Santos, & Minasny, 2003). More
recently, the conceptional framework for soil mapping has
been linked to ML (ML-DSM) with the underlying assump-
tion that the ML model builds decision rules in a similar
way as the soil surveyor does. As such, ML models have
often been used for soil knowledge discovery. That is, to
infer causal relationships between soil properties and for-
ming factors and processes from the association of the for-
mer with the covariates (e.g. in Bui, Henderson, &
Viergever, 2006; Guevara et al., 2018; Hengl et al., 2017;
Ma, Minasny, Malone, & Mcbratney, 2019; Wiesmeier, Bar-
thold, Blank, & Kögel-Knabner 2010; Wilford & Thomas,
2013). However, there are reasons to question the validity of
our common practice of soil knowledge discovery when
using ML, as previously demonstrated by Shmueli (2010)
and Fourcade, Besnard, and Secondi (2018). For instance,
tree-based methods, such as random forest, seek a statistical
optimum following a hierarchical partitioning of data rather
than accounting for soil processes and causalities in the sys-
tem. Consequently, with a well-calibrated model and a suf-
ficiently large number of covariates the resulting map can
be accurate based on validation metrics, such as concor-
dance correlation coefficient or mean squared error. This
means that we can produce soil maps that can be easily
reproduced, updated and validated. However, the rationale
of pedological knowledge discovery based on ML is to be
treated with caution, as is demonstrated in this study.

In recent years, large and abundant datasets are
becoming available to scientists. Models can be applied to
establish empirical relationships among the data, in what
is often called “data science”. This raised a number of
issues yet to be fully tackled, such as the multiple interac-
tions of many related variables, models not fully specified
(i.e. not all factors are accounted for), difficulties in iden-
tifying causality from empirical data, and challenges
around data exploration and understanding when includ-
ing disciplinary knowledge (Blei & Smyth, 2017). This is
also fundamentally different from traditional empirical
scientific development where data were collected to
answer a formulated hypothesis.

In this paper we investigate whether the (complete
lack of) knowledge of soil-forming factors and processes
influences ML-DSM performance. We do this by testing
whether pseudo-covariates can be used to accurately
predict a soil property. These pseudo-covariates do not
represent any soil-forming factors, nor are they related to
soil-forming processes.

We use the random forest (RF) model. RF is an ensem-
ble tree-based ML technique widely used in DSM. An
ensemble of trees is built based on a bootstrap sample of
the training data. All tree predictions are averaged, and
these averages are taken as the final predictions. The RF
algorithm introduces an additional random perturbation

to reduce the chance of overfitting during the splitting of a
tree, by selecting a reduced subset of covariates at each
split. The RF algorithm relies on three user-defined
parameters, the number of trees, the number of covariates
selected at each split and the size of terminal nodes. For
more details on the parameters, we refer to Wadoux, Brus,
and Heuvelink (2019, sec. 2.2). In this study we
implemented the default RF model from the R package
ranger (Wright & Ziegler, 2017) using fine-tuned parame-
ter values. Prediction accuracy was assessed by the concor-
dance correlation coefficient (CCC) and the root mean
square error (RMSE), derived using an independent vali-
dation set. The bias was assessed by the mean error (ME).
The most important predictors in the RF model were iden-
tified using the mean decrease in the variance of the
response as a variable importance measure (Wright &
Ziegler, 2017).

We tested the methodology on a hypothetical case
study. The test area was defined as the Pangaea continent,
in the shape of 250 million years ago. The soil property of
interest is the (pseudo) topsoil organic carbon (SOC,
g kg−1). These values were taken from existing data: a
200 km × 200 km SoilGrids (Hengl et al., 2017) tile,
located between longitude 17 to 22 and latitude 52 to
54 degrees. The SOC tile was considered as our variable of
interest and cropped to the extent of the Pangaea. Two sets
of 500 and 1,000 points were selected by simple random
sampling for calibration and validation, respectively. In
total, 41 pseudo-covariates were used as predictors in the
RF model. They were created using publicly available pic-
tures of pedometricians' heads, shoulders and upper
chests. The three colour channels (red, blue and green)
were reduced to their first principal component (PC). The
first PCs of all pictures were geo-referenced, cropped to
the extent of the Pangaea and resampled to match the res-
olution of the SoilGrids tile. An example set of the first
PCs for eight pictures used as pseudo-covariates is shown
in Figure 1.

The results show that RF with the pseudo-covariates
predicts SOC accurately. The CCC on the calibration set is
0.65, whereas the RMSE is 19.68 g kg−1. There is a negligi-
ble bias (ME = 0.48 g kg−1). The predictions yielded satis-
factory prediction accuracy on the validation set, as shown
by a CCC of 0.67, a RMSE of 19.77 g kg−1 and a bias close
to 0 (ME = −0.01 g kg−1). This also shows that the RF
model was not overfitted. Figure 2 shows the 20 most
important predictors to the RF model. Pseudo-covariate
Alex McBratney was the most important predictor, with
a variance of the response value of 21,645 g kg−2. The
mean decrease in the variance of the response steadily
decreases for the other covariates, until reaching a value
of 4,775 g kg−2 for the least contributing predictor
(i.e., Georges Matheron, not shown).
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The results show that using pseudo-covariates with-
out pedological meaning as predictors of SOC in a ML
model produces maps having a similar accuracy

compared to existing ML-DSM. This map was produced
using an ML model that recognizes relevant patterns in
the data. Fourcade et al. (2018) noted that any image con-
taining a spatial pattern can be fitted with a ML model to
the values of a dependent variable (SOC in this study).
Once the numerical rules of the ML model have been
established, they can be applied to new locations to pre-
dict soil properties. This shows that the rationale of
knowledge discovery based on ML is to be treated with
caution, as an accurate soil map can be produced without
any pedological knowledge.

Variable importance measures are often used to draw
causal conclusions about soil-forming factors and processes,
i.e. for knowledge discovery. However, we can rarely attest
to the validity of these conclusions because we do not know
the true soil-forming factors and processes. This is nothing
new, as Jenny already discussed the problem of causality in
his book “Factors of soil formation”. Jenny (1941, p. 118)
gave the example of nitrogen and organic carbon which
vary according to soil moisture. He stressed that while cer-
tain properties vary together, they do not necessarily relate
to explaining processes of soil formation. This logic applies
to ML-DSM studies where we only have access to the
covariates, that are simple surrogates for the forming factors
in the empirical ML equations. We argue that care should
be taken when drawing causal conclusions from the vari-
able importance measure, because strong assumptions based
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FIGURE 1 Example set of eight (out of 41) first principal components (PCs) of pedometricians' head, shoulders and upper chest images

used as pseudo-covariates in the RF model
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FIGURE 2 Set of 20 most important predictors of the random

forest (RF) model
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on proxy information are implicitly made. Therefore we
argue that it more sound to use ML and its variable impor-
tance measures to postulate hypotheses about forming fac-
tors and processes (see also Ma et al. (2019)). New causal
pedological knowledge could then be discovered by testing
these hypotheses using properly designed experiments and
principles of soil genesis. In this context, we consider that
ML in DSM would be more of a “hypothesis”, rather than a
“knowledge” discovery tool.

Bui et al. (2006) stated that “the fact that the decision
tree models can be used to make extensive maps of soil
properties demonstrates that knowledge discovery from the
soil-landscape databases has occurred”. We argue that the
ability to produce maps is due to the fact that the ML algo-
rithm used was able to recognize relevant patterns in the
database even when the covariates are unrelated to soil-
forming factors and processes. Efficient models (prediction
wise) can be created using meaningless predictors, but only
models using a hypothesis (e.g. scorpan (McBratney et al.,
2003)) behind the model construction should be used.
Therefore the covariates selected for DSM models should
always represent interpretable factors that are related to the
soil-forming factors and all interpretation should still be
carried out with extreme caution. Pattern recognition
should not be equated with knowledge discovery because
knowledge discovery requires the interpretation and evalu-
ation of the recognized patterns (Gullo, 2015). Thus, as long
as we are concerned only with the production of spatial soil
information i.e. soil maps via pattern recognition, using ML
in DSM does not necessarily serve the purpose of discover-
ing pedological knowledge.
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