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Abstract

Soil is a complex system in which biological, chemical and physical interactions

take place. The behaviour of these interactions changes in spatial scale from the

atomic to the global, and in time. To understand how this systemworks, soil scien-

tists usually rely on incremental improvements in the knowledge by refinement

of theories through hypothesis testing and development using carefully designed

experiments. In the last two decades, the primacy of this knowledge construction

process has been challenged by the development of large soil databases and algo-

rithms such as machine learning. The data-driven research approach to soil sci-

ence, the inference of soil knowledge directly from data by using computational

tools and modelling techniques, is becoming more popular. Despite the wide

adoption of a data-driven research approach to soil science, there has been little

discussion on how a research driven by data instead of hypotheses affects scien-

tific progress. In this paper, we provide an introductory perspective on data-driven

soil research by discussing some of the issues and opportunities of knowledge dis-

covery from soil data. We show that while data-driven soil researchmay seem rev-

olutionary for some, soil science has a long history of exploratory efforts to

generate knowledge from data. Empirical and factual soil classifications, for

example, were data driven. We further discuss, with examples, (i) data, databases

and the logic of data storage for data-driven soil research, (ii) the issues of extreme

empiricist claims that arise corollary to the increase in the use of computational

tools, and (iii) the challenge of formulating a scientific explanation based on pat-

terns observed in the data and data analysis tools. By considering the epistemic

challenges of the data-driven scientific research in the light of the historical litera-

ture, we found that there is a continuity of practices, some being certainly ampli-

fied by recent technological changes, but that the core methods of scientific

enquiry from data remain essentially unchanged.

Highlights:

• Historical account of data-driven soil science research.

• Describe data to be used for data-driven soil science.

• Discuss conceptual issues and opportunities for data-driven soil science.

• Investigate the challenge of formulating an explanation from soil data.
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1 | INTRODUCTION

The last decade has witnessed a considerable increase in
electronic digital information and information technologies
available for academic research. This increase is
questioning how the sciences are approached from a meth-
odological perspective. Criticisms are being made of
research driven by data and computational tools, thus
reinvigorating debates on the scientific method and scien-
tific practices in many fields of science. Soil science is no
exception. Despite consensus that soil science fundamen-
tally relies on experts and extensive domain knowledge,
the development of sensing techniques, analytical methods
of soil analysis, and the ease of storing and processing these
data are changing the practice of soil science (Roudier,
Ritchie, Hedley, & Medyckyj-Scott, 2015; Rossiter, 2018).
The indubitable challenge for soil science is that of
extracting knowledge and relevant information from
increasingly large, diverse and complex soil datasets.

A great deal of attention has thus recently been paid to
data-intensive or data-driven research in both the scientific
(e.g. Bui, 2016) or popular (e.g. Minasny & McBratney, 2013)
soil science literature. Paraphrasing Kelling et al. (2009),
data-intensive research takes an approach where progress is
compelled by data, as opposed to the “knowledge-driven” or
“expert-centred” approaches in which a hypothesis is devel-
oped on or corroborated by data. Data-intensive research is
emerging through the combination of several timely factors,
which are 1. the ease of data generation, processing and stor-
ing, 2. the development of computer, computational power
and software resources, and 3. the popularization of complex
statistical and algorithmic tools, which increasingly engage
machine learning calculi, to explore these repositories
of data.

The use of statistics for exploring databases and finding
patterns in data is not new in soil science. Yaalon (1975),
for example, suggested statistical search procedures to
explore the functional relationships in a natural soil sys-
tem. When more is known about the soil structure and
process, the statistical model can gradually be replaced by
a mechanistic one. Others (e.g. Jenny and Leonard, 1934;
Webster, 1997) have used statistical modelling for correla-
tion analysis, data dimensionality reduction or regression.
Much of statistical modelling in the twentieth century was
model-based: it requires the scientist to specify the candi-
date independent variables that could enter the model, the
functional form of the relationships (linear, quadratic)
between independent and dependent variables, and the
assumptions of the underlying nature of the soil data (e.g.
deterministic or random; Webster, 2000) (Hochachka
et al., 2007). Lately, soil scientists have witnessed an
increase in the use of flexible data-driven models and algo-
rithmic strategies, in particular machine learning, to tackle

this data-rich environment. Neural networks or random
forests are primary examples of these models, whereas
regressions with a specified form of the functional rela-
tionship (e.g. linear) are examples of parametric model-
based statistics (Breiman, 2001). In machine learning, no
explicit assumption is made on the functional form of the
relationship between independent and dependent vari-
ables. Instead, machine learning models seek an estimate
of the form of the relationship which best detects and
describes patterns in data, given some accuracy indices,
thus avoiding many of the assumptions of parametric sta-
tistical modelling outlined previously. The major disadvan-
tage of most machine learning models is their lack of
interpretability, i.e. the model structure is very complex
and cannot be readily visualized or perceived.

In several subdisciplines of soil science, research
driven by database and computational tools have
flourished over the past 20 years. For example, Bui, Hen-
derson, and Viergever (2009) used a large (i.e. containing
more than 10,000 soil samples) soil organic carbon data-
base and environmental covariates to infer the organic
content of agricultural soils of Australia. Morellos
et al. (2016) compiled laboratory-derived measurements
and infrared soil spectral data containing several thou-
sands of wavelength values, and used machine learning
models to estimate soil properties using their molecular
vibration in the spectra. In soil hydrology, Kornelsen and
Coulibaly (2014) estimated soil moisture in the root-zone
by artificial neural networks at various local study sites,
using a dataset generated by the physically constrained
HYDRUS-1D hydrological model. These example studies,
far from being an exhaustive summary of the current liter-
ature, illustrate that data-driven research has a real impact
on the current production of knowledge in soil science.

Data-driven research has generated much enthusiasm
in soil science, in particular in the sub-fields of soil sur-
vey and pedometrics, where research has always relied
more on field and observational data than on manipu-
lated experiments. The abundance of data and their use
as a primary driver of knowledge in subdisciplines of soil
science have several methodological and epistemological
implications that have not been documented so far. This
raises several questions. Is data-driven soil research
unprecedented in its history? Are all data equally valid
for use in data-driven science? What are the risks, chal-
lenges and extreme claims of data-driven soil research? If
knowledge is to be found in the data, should we invest all
our efforts in generating more data? This paper discusses
data-driven soil science, and attempts to provide some
contexts and an introductory perspective to the concep-
tual challenges pertaining to the research strategies
driven by data instead of hypotheses. Notably, this paper
aims to serve as a starting point for further discussions
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on the new epistemological challenges facing soil science
research in the information era.

The perspective developed in this study stems from
challenges encountered in pedometrics, digital soil map-
ping, numerical soil surveys or pedotransfer functions,
fields with which the authors are most familiar. The gen-
eral comments made in the paper are also applicable to a
large number of applications in soil science where the
development of large soil databases and their exploration
with machine learning is emerging (e.g. in soil genotype
studies). We leave it to the reader's discretion to apply the
concepts discussed here to various disciplines and
subdisciplines.

2 | KNOWLEDGE-BASED VERSUS
DATA-DRIVEN RESEARCH

2.1 | Scientific methods in soil science

Much of today's epistemology acknowledges that scien-
tific progress is either goal-driven or anomaly-driven. In
soil science, the role of hypotheses is crucial but is not
given the same importance in each of the cases. When
the research is goal-driven, viz. the soil scientist wants to
solve something, the hypothesis defines areas of focus for
the research. The hypothesis is tested through an experi-
ment on generated data tailored to answer a question.
From the results of this test, a deduction is made on
whether the hypothesis is corroborated. The explanation
can also be of the inductive-type, by assigning probabili-
ties to the soil phenomenon to be explained using statisti-
cal laws (inductive statistical explanation). Much of soil
science is goal-driven: in the past when soil science was
associated with agronomy and had to fulfill the promise
of agricultural production (McDonald, 1994), and still
today in several sub-fields of soil science, for example in
digital soil mapping when producing accurate quantita-
tive soil information. In an experimental science, the
hypothesis is formulated at the beginning of the research
and drives data collection. Alternatively, progress may be
anomaly driven when a phenomenon or observation con-
flicts with existing knowledge. Think of a field pedologist
noticing in a soil profile an unexpected soil feature (col-
our or aggregate), which cannot be readily explained
using existing knowledge. The hypotheses that follow
with the aim of explaining this unexpected soil feature
may be as numerous as possible tracks to investigate. The
hypotheses are elaborated within existing theories, scien-
tific laws, tacit knowledge of the soil scientist and a scien-
tific context. This scientific development based on
extensive expert knowledge is different from scientific
development driven by the exploration of (large) soil

datasets and databases by statistical and algorithmic
tools, in particular machine learning. In today's data-
driven research, large stores of soil data are explored
using algorithms which do not rely on explicit hypothe-
ses, but aim to find patterns, correlation and order in
data. This is fundamentally different from scientific pro-
gress based on carefully designed experiments and
hypothesis testing.

2.2 | Data-driven soil science is not new

One may yet rightfully claim that progress based on data
accumulation and ordering is nothing new to soil science
(Philip, 1991). In the nineteenth century, agricultural sta-
tions in western Europe were collecting daily data from
several experiments on, for example, fertilizer applica-
tions, climate or organic matter degradation. The amount
of data was such that in 1919 the Rothamsted experimen-
tal station hired Ronald Fisher, young statistician, to
extract information from the large amount of soil and
crop data amassed over 70 years (Johnston, 1994). Simi-
larly, many of Vasilii Dokuchaev's findings were based
on massive amounts of data on soil properties, geological
and geomorphological features, climate and land use, col-
lected by him and a network of students in large areas of
the chernozem belt (Moon, 2005). Many aspects of past
and present soil science, as with other natural sciences
(Leonelli, 2014; Strasser, 2012b), are not about testing
hypotheses, but concern creating order in what is
observed in nature by classifying a (large) number of soil
data. Accumulation of soil data is never an end in itself,
it is meant to classify and reduce complexity of the soil
system and to understand relationships among soils
(Hartemink, 2015; Isbell, 1992). American or Australian
early classifications, for example, were built on empirical
topsoil parameters such as colour, texture and organic
matter content, free of “scientific basis” (Krasilnikov,
Arnold, & Ibanez, 2010). This view of science based on
“facts” and observations (i.e. data-driven or data-inten-
sive research) belongs to a nominalist epistemology.
Nominalism states that scientific laws and theories are
derived using logic and reason from empirically derived
facts and observations. Nominalism is thus based on
empiricism and opposes rationalism: rationalists recog-
nize ideas and theorizing. This duality is visible in the
fundamental differences between soil classifications.

The seventh approximation is one example of nomi-
nalism in soil science, so are the “factual classifications”
of Northcote (1971) or the numerical classifications (e.g.
Hughes, McBratney, Minasny, & Campbell, 2014), which
are alleged to be free of subjective judgement: “This is to
say that the soil scientist should use soil genesis in the
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form of the empirical geographic correlations […] but should
not make them dependent upon hypotheses of soil-forming
processes and should not translate them into theories”
(Cline, 1963). French and Russian early soil classifications,
based on morphogenetic soil characteristics (e.g. that of
Duchaufour, 1963), were examples of rationalism in soil sci-
ence. What is striking is how closely 1960s nominalist views
on soil classifications are similar to contemporary definitions
of data-driven science. For example, Moore, Isbell, and
Northcote (1983), in a discussion of the two main Australian
soil classifications existing in the 1960s, relate classification
to pattern recognition. Isbell (1992) explains the two immu-
table aspects of classification since the 1920s in Australia,
the first being the grouping of similar soils into classes, and
the second being the assignment of a new entity to one of
the classes, and that the classification needs to be updated
when new information becomes available. In each of the
examples, subjectivity is avoided in the treatment of the soil
data, should the classifier be the soil scientist in the past or
the computerized statistical or algorithmic tools in the
present.

2.3 | What is the difference with current
data-driven science?

The above suggests that some early developments in soil
science were guided by data alone, but this was most likely
not the case because soil scientists are never free from
ontological assumptions about the arrangement of the nat-
ural processes (Strasser, 2012b). The soil is not an isolated
body, but a continuum. In any classification, however,
each soil individual is assigned to a class, classes that are
artificial, bounded or fuzzy (McBratney & Odeh, 1997)
entities. For example, the soil surveyor assumes the exis-
tence of a definite number of soil classes as there exist no
“raw” observations defining what an exact soil class might
be, thereby forcing existing soil data into ontological cate-
gories. Soil classifications are revised periodically as
knowledge increases. Each new scheme was based on a
different assumption about the number of classes “useful”
for a wide range of purposes (Krasilnikov, Ibanez Marti,
Arnold, & Shoba, 2009). Similarly, soil texture classes are
another example of ontological categories because the soil
texture is continuous in nature. Clearly, this shows that
many aspects of soil science are never driven by data
alone, but by a combination of knowledge and observa-
tions/experiments.

What stands as new in the present-day data-driven
soil research is thus not immediately apparent. As
Strasser (2012b) puts it, “natural history has been ‘data-
driven’ for many centuries”. We have outlined previously
that the practices of data collection, storage, ordering and

classification, and the methods of analysis of these data,
arrived long before the advent of computers and elec-
tronic databases. Indeed, soil scientists in the past, like
contemporary ones, were not less exposed to vast
amounts of data. They stored data in soil archives, cre-
ated order by means of classifications, and modelled
trend and pattern using statistical modelling. The practice
of data-driven enquiry is not so new in soil science and
seems not to be a characteristic of twenty-first century soil
science research. Most of the components of the present-
day data-driven soil research are perhaps just a reflection
of a change in magnitude of the amount of data collected,
their storage and in the capacity to analyse them with
complex statistical tools aided by computational power.
We will refrain from providing definite dissimilarities
between past and today's data-driven science, but two
aspects appear as potential differences. They are also
found elsewhere (e.g. in Strasser, 2012a, Strasser, 2012b;
Sepkoski, 2018) in the literature on natural sciences. The
first is that the link to the physical object of the soil mate-
rial becomes smaller in today's data-driven soil research.
Practitioners in the past had a close link to the soil mate-
rial. At the Rothamsted station in the early twentieth cen-
tury, statistician Fisher had on-site scientific exchanges
with chemists and agronomists. Similarly, large-scale soil
classification schemes, such at that from the USA from
around the same period, were derived by a soil scientist
with significant field practice. Today's data-driven soil
science can be performed entirely from the office desk, on
soil data stored in electronic databases, without the
fundamental need for field experience (regrettably, some
argued already in the 1990s, for example in Philip, 1991).
The second is the omnipresence of statistical methods
(Strasser, 2012b). We stressed previously that past soil sci-
entists were also finding patterns and correlation in data
aided by statistics, such as Fisher at Rothamsted, but sta-
tistical modelling has increased significantly in the past
30 years. Interestingly, past statistical models were inti-
mately related to and designed for the problem to be
solved, whereas current models are more complex, were
not initially developed for nor thought to be applied on
soil or environmental data, and their structure disregards
the underlying mechanisms that created the data.

2.4 | Data-driven science for hypothesis
generation

There are many opportunities in the scientific literature
(e.g. Elragal & Klischewski, 2017; Leonelli &
Ankeny, 2012; Miller, 2010; Sepkoski, 2018) to learn
about the elements of contemporary data-driven
research. Some are also discussed later in this article. In
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short, data-driven soil science is essentially a hypothesis-
generation process (Bui, 2016; Hochachka et al., 2007;
Kitchin, 2014a). The argument is that, with large volumes
of data describing a situation and aided by statistical and
algorithmic tools, in particular machine learning, it is
possible to discover patterns and correlations in the soil
data (Bui, 2016; Pennock, 2004). These correlations,
when interpreted by the soil scientist, may trigger new
hypotheses that can ultimately be tested using the
hypothetico-deductive approach to corroborate that a cor-
relation found in the data indicates an actual mechanism
occurring in the soil system. Data-driven science is thus
likely to be useful at an early stage of the discovery
process in proposing ideas to the researcher that would
otherwise remain unseen.

In this perspective, data-driven science is a form of
abductive reasoning (Kitchin, 2014b; Miller, 2010).
Abductive reasoning builds on data describing a situation
and ends with a hypothesis possibly explaining the data.
This is a weaker form of inference compared to the well-
known deductive and inductive reasoning (Miller &
Goodchild, 2015). Deduction is a syllogistic logic, from the
general to the specific. A hypothesis is formulated and
tested by an experiment. Induction, conversely, builds
on observations (the specific) to make a generalization
(a hypothesis or a theory) and a prediction, which can be
validated by data. For Gohau (1992), the boundary
between deductive and inductive reasoning in the research
process is not strict because knowledge is often acquired
by going back and forth between data, hypothesis and the-
ory. The author questions the origin of the hypothesis in
the inductive reasoning and shows that this is often the
output of a previous induction. Gohau (1992) thereby calls
“invention” the process of generating a hypothesis from
the data. In data-driven science, the “invention” can be
proposed by an algorithm by mining a complex multivari-
ate database. Abductive reasoning, proposing hypotheses,
is thus better used at an early stage of the discovery
process, and precedes inductive and deductive reasoning.

3 | WHICH DATA?

3.1 | Observational versus
experimental data

On the basis of this data-driven science are the computable
electronic digital data (Strasser & Edwards, 2017), referred
to as digital data hereafter. The soil data arise either
from a controlled experiment or from an observation of the
(uncontrolled) natural environment (Dijkerman, 1974).
Observational data are, for example, remote sensing images
(e.g. Landsat, SMOS, hyperion), spectroscopic information

(infrared, nuclear magnetic or electron spin resonance) of a
soil sample, soil DNA, laboratory soil analysis, text from
existing literature on soil science (Furey, Davis, & Seiter-
Moser, 2019; Wang et al., 2019), qualitative soil informa-
tion or farmers expert saying. In this perspective, observa-
tional data can be either a measurement, a recorded
instrument reading or a human observation. In soil sci-
ence, where the level of physical understanding is deep, it
is unlikely to have a scientist collecting blindly a large
amount of data with the objective of finding a potential
pattern when, ultimately, these data are analysed. We rely
instead on the opportunity to access and store legacy data
from multiple sources. There is a direct link between the
data collection method and the quality of inference that
can be made (Kelling et al., 2009). Data from carefully
designed experiments are the most suitable to corroborate a
hypothesized causal relationship between variables. These
data, however, should be used in data-driven scientific
research with caution because the environment of their col-
lection is highly manipulated and controlled. The difficulty
to re-use data from a controlled experiment has long been
noted in soil science. This was the case, for example, in the
1970s when applications of experimental (laboratory) results
began in hydropedology. Uniform wetting recorded in an
experimental setup had to give way to preferential flow in
the uncontrolled soil environment (Warkentin, 1994). This
was also noted by Dijkerman (1974): when the experimental
models of the underlying soil processes are too simplified,
either because our knowledge is incomplete or the technol-
ogy precludes us from doing better, the application of experi-
mental knowledge on soil is limited. Another limitation for
the re-use of experimental data is that experiments are
mostly made at a specific scale, generally local for field
experiments (e.g. pedon scale in the field for soil warming
experiments; Ettinger et al., 2019), or at horizon scale in the
laboratory, which restricts their re-use for larger-scale data-
driven modelling and the comparison of results between
studies. Hypothesis-driven experiments are thus the most
adequate to generate data that can corroborate causal rela-
tionships and explain a phenomenon, but use of these data
in data-driven research to investigate soil processes should
be made with more discretion than when using purely
observational data, because only few of the components
found in the natural system were allowed to vary in an
experimental setup.

3.2 | Challenges for multi-source
observational data collection

The use of observational data from different sources
logically leads to some concerns, notably whether suffi-
cient metadata are supplied together with the soil data.
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Typical soil metadata are the soil depth or the pedoge-
netic horizon at or from which the soil observation has
been made. Some important metadata in a data-driven
context are the origin, description of the laboratory anal-
ysis protocol, identification code, ownership or even
uncertainty (Heuvelink & Brown, 2006) of the measure-
ment or analysis method. The metadata helps the scien-
tist to evaluate the value of the information conveyed in
the data, and to understand the assumptions and deci-
sions that were made during data curation. In this sense,
they provide useful information for exploratory analysis,
to select a subset of the database for analysis or, perhaps
more importantly, to account for possible bias that
may have occurred during data collection or synthesis
(Kelling et al., 2009). The use of guidelines and persis-
tent digital object identifiers (Brase, 2009) enables a
worthwhile picture of observational data available, asso-
ciated gaps, and prepares the way for data-driven
modelling. Several efforts for data collection have been
made. Soil databases such as the Africa Soil Profiles
Database (Leenaars, 2013) and the International Soil
Carbon Network (ISCN; Harden et al., 2018), for exam-
ple, have strict quality control procedures and require
explicit information on the provenance and data sharing
policy. The African database contains over 18,500 geo-
referenced legacy soil profile records for 40 sub-Saharan
African countries, from 54 different sources. Users can
access the data online by specific query. Similarly, the
soil carbon database is a community-based data sharing
effort. The data are required to be geo-referenced and go
through three phases before being released. The data
must be formatted by a template and pass a quality test
where the provenance and methodology are checked.
The data are released after a validation step made by the
network members.

Historically, for example in the nineteenth century,
the soil data producers were also the users. Data sharing
was not essential for knowledge production because the
collection of the soil samples in the field, and their analy-
sis in the laboratory were performed by the same person
in an institution. Both the soil material or the descrip-
tions (drawing and pictures) and measurements of this
material were amassed at a single geographic location.
The soil samples as a physical (material) entity were
stored in soil archives and transformed into a multitude
of more convenient representations, such as images or
summary digits of their composition. The centralization
of the data enabled cataloguing, comparison and classifi-
cation of soil into different types, as was done in a natural
history museum for animal or plant species (Strasser &
Edwards, 2017).

Crucially, present-day data users are most often dif-
ferent from those who produce them. In the last few

decades, more divide appeared between the soil scientists
who produce the data and those who analyse them,
between the database producer and the data analyst.
Present-day soil data are decomposed into multiple frag-
ments of digital bits. The electronic nature of the data-
base means that these bits of soil data can be analysed
simultaneously at multiple locations, but also readily
combined with different data sources, for example a satel-
lite data stream.

To be sure, soil data have been shared for centuries
through publications and conferences, re-used in differ-
ent research works or combined through meta-analyses,
but the increased circulation of electronic databases and
the specialization of researchers who analyse them have
made subsequent data-sharing problems more acute.
Resources for data sharing exist but are limited by gov-
ernmental policies and ethical concerns on the re-use of
data by private companies, or inversely companies are
reluctant to share data for which they made investments.
This increase in database circulation also questions the
centralized logic of data and knowledge production,
inherited from the past when data were supplied and
analysed in research institutions. Strasser and
Edwards (2017) argued that this centralized logic is still
prevailing today, but in a different form. Electronic data-
bases, like soil data on pieces of paper in the past, have a
physical reality in large computers able to store petabytes
of data. These computers require specialized infrastruc-
tures found in large research institutions. The same
research institutions are the ones possessing the largest
soil data generation tools, such as spectrometers of all
kinds, large-scale observational data collection (e.g.
national-scale soil monitoring) or remote-sensing imag-
ery. Similarly, most specialized researchers able to ana-
lyse the databases work at large private companies and a
few research institutions. In this sense, the present-day
logic of centralized soil databases is in substance the
same as that of the past.

Combining a large amount of soil data increases the
risk of joining data that have major incompatibilities or
that altered from their initial use. Soil observations (e.g.
pH) are obtained with specific spatial and temporal char-
acteristics. The information they carry, and the statistical
properties thereof, are relative to these specific spatial
and temporal characteristics. Each soil datum provides a
snapshot of the soil in space and time. Without sufficient
metadata on the characteristics of the soil observation (e.
g. confounding factors such as climate), the site-by-site
comparison of soil observations or the use of the soil data
for purposes other than those they were initially gener-
ated for, is to be made with caution. In large datasets, the
problem of temporal replication is also important, i.e. do
we have sufficient information in time to model a
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dynamic soil property? An attempt was made by
Heuvelink et al. (2020) on 5,000 legacy soil organic car-
bon data collected in Argentina between 1982 and 2007.
Using a machine learning ensemble tree model, the
organic carbon at different soil depths was modelled over
the 36-year period. The study found that model accuracy
was limited because of both the lack of appropriate envi-
ronmental covariates and poor temporal and spatial cov-
erage of the soil data. To fit user-demand monitoring of
soil organic carbon change, the solution is found in the
development of standardized soil sampling and monitor-
ing schemes, such as that proposed by Batjes, Ribeiro,
and Oostrum (2020).

However, while the creation of national and global
datasets of all kinds of soil properties is now a pursuit for
many communities of sub-disciplinary soil science, data
accumulation and constitution of harmonized databases
is never an end in itself. In fact, databases are useful
only when the user makes them speak qua representa-
tion of the soil system. But who makes them speak?
Undoubtedly, the ones who produced them are the main
users: individual researchers and academics in research
institutions and indirect “soil science practitioners”
such as farmers or private companies. As Strasser
and Edwards (2017) put it, the social landscape of
science is changing. For several reasons, databases
are increasingly made publicly available, which
opens up avenues to citizen-assisted science. Undeni-
ably, soil science has on several occasions benefited
from a network of non-specialist volunteers. Rossiter,
Liu, Carlisle, and Zhu (2015) detail some examples of
such initiatives, such as mySoil for collecting soil obser-
vations using smartphones or the OPAL Soil and Earth-
worm Survey (Bone et al., 2012) to identify earthworm
species and record earthworm density. In these examples,
non-specialists contribute to building the soil database
with various levels of engagement and expertise. Citizens
not only amplify the work of scientists by adding their
observations to the pool of data, but the novelty is that
they increasingly act to build soil knowledge by per-
forming non-routine soil data analysis. Perhaps another
novelty in this contemporary data-driven soil science,
corollary to the elements defined in Section 2, is the pro-
duction of knowledge outside, both geographically and in
terms of actors, of academic research institutions
(Strasser & Edwards, 2017).

4 | THE RISK OF RADICAL
EMPIRICISM

As a consequence of the increase in the use of computa-
tional tools and information technologies in soil research,

discourse made in other fields, such as in data science, is
being introduced into soil science. Most of the arguments
are rooted in a radical form of nominalism called empiri-
cism. Kitchin (2014b) describes three main propositions
associated with empiricism in data-driven sciences: 1.
data analysis is free of any theory, 2. the data speak for
themselves, free of human bias, and 3. no domain knowl-
edge is needed. In fact, the propositions of empiricism
made explicit by Kitchin (2014b) can be challenged and
represent extreme claims made by advocates of data-
driven sciences. We discuss each of these propositions in
the context of soil science in the following subsections.

4.1 | Theory-free analysis of data

The argument here is that analysis of data can be
made free of any theory, model, hypothesis and scientific
method. This was provocatively endorsed by Ander-
son (2008), who argued that knowledge production directly
from data will lead to “the end of theory”. The illusion that
pattern discovery in data is free of any subjacent theory
originates from marketing and retail (Kitchin, 2014a) but
also appears in some empirical soil science studies. Auto-
mated soil mapping (Hengl et al., 2014) is an example of
an attempt at theory-free discovery of insights from a large
soil database. Automated soil mapping is the process of
generating soil spatial information from a highly auto-
mated and flexible machine learning model, information
which can be updated when new input data become
available. The soil scientist does not need to build a reason-
ing or hypothesize a pattern in relation to environmental
covariates; the algorithm based on machine learning
searches for the optimal soil pattern using all the informa-
tion provided by the scientist in an error-minimization pro-
cedure. The soil pattern is not constrained to any scientific
law or tested against existing theories, but directly returned
to the end user in a geographic information system.

Yet, the argument of theory-free data analysis from
empirical epistemology does not hold for long in soil sci-
ence. Any pattern discovery or data mining is guided by
scientific reasoning or ontological assumptions. Data are
never self-explanatory. The validity of analytics, algo-
rithms or machine learning models has previously been
approved and refined, and any model expresses a vision
of how the pattern exists within a specific scientific
approach. In this sense, machine learning models catego-
rized under connectionist (e.g. neural network) or evolu-
tionary (e.g. genetic programming) each represent a
different viewpoint on the solution space partitioning
(Domingos, 2015). In the earlier example on automated
soil mapping, using a different machine learning algo-
rithm would lead to discovering a different relationship
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between covariates and point soil observations, and ulti-
mately a different soil pattern. In short, discovery of pat-
terns from data does not occur in a scientific vacuum
(Kitchin, 2014a), it is always contextualized within a scien-
tific domain. Discovering patterns relates to the “invention”
of hypotheses from data (abductive reasoning; see Section 2)
and is useful only if framed within the existing theories to
infer knowledge by deduction. For example, Rasmussen
et al. (2018) investigated which soil physico-chemical prop-
erties, other than clay-sized particles, may predict soil
organic matter (SOM) stabilization. To do so, they built a
large dataset of 5,500 soil profiles spanning different eco-
regions, climate gradients and soil taxa, and used a regres-
sion model on independent soil variables. Their findings
suggest that the relative importance of SOM stabilization
mechanisms varies with climate and soil pH, and urge
updating the set of variables used as predictors of SOM sta-
bility by most biogeochemical models. This “guided knowl-
edge discovery” process, that is, the generation of a
hypothesis to update existing theories, is common and has
been later adopted by others (e.g. by Vos et al., 2019).

4.2 | The data speak for themselves, free
of human bias

Data collection is a somewhat objective, but selective
process (Dijkerman, 1974). The soil colour, moisture or
texture, among other pieces of information, can be
observed by a pedologist in a soil profile, but only the
most significant information is used for the problem
under study. To decide what is significant, the soil scien-
tist uses a reservoir of pedological and tacit knowledge,
that is, information and techniques learned through
experience (Hudson, 1992). Similarly, when a computer
model simulates soil organic carbon dynamics, the
model is governed by some a priori knowledge because
a number of environmental variables are supplied to the
model. Data “cleaning”, described in Section 3.2, is
another step involving many assumptions and decisions.
The data always “speak” within a context. In empirical
epistemology, however, the pattern found in the data is
sufficient evidence of the phenomenon under study,
without the need for human contextualization.
Kitchin (2014a) showed that this notion holds if two
assumptions are met. The first is that data are neutral
and generated without bias. The second is that associa-
tions between data are necessarily meaningful, which
makes the human interpretation of these correlations
irrelevant. Both of these claims are problematic in soil
science. Indeed, data do not pre-exist by themselves and
are always generated from a particular view and context,
which is the sensor (including the human) or the

observer's sense. As mentioned previously, data pass
through subjective filters, called data “cleaning”, before
they are used in any process. The second assumption
also does not hold because random association in envi-
ronmental data is the rule rather than the exception.
Interpreting random associations as meaningful may
lead to flawed conclusions about the causes and deter-
minism of a soil process. Soil scientists are well aware of
this matter, as shown by the attempts to be alert to the
risk of interpreting correlation as causation in the pat-
tern found in soil data (Wadoux, Samuel-Rosa, Poggio, &
Mulder, 2020). When seen through this lens, it is clear
that the way data are selected, assembled and inter-
preted transmits rather than mitigates human bias, and
determines the answers that the soil scientist obtains
from the data.

4.3 | No pedological knowledge is
needed

Soil science has a long tradition of research carried out
by scientists whose first affiliation was not soil science
but forestry, biology, chemistry or engineering
(McDonald, 1994). These scientists have conceived soil
science from their viewpoint and expert-specific contex-
tual knowledge. In recent years, computer scientists,
machine learning experts and data scientists became
active in soil science, in particular in subdisciplines
where data availability is important and the use of statis-
tics is prevailing. Philip (1991), for example, noted in the
1990s the supplementation of laboratory and field experi-
ments by computer modelling of data by “computer
jockeys”, which the author argued is inadequate for seri-
ous soil science research. The increase in computational
studies in soil science was also indirectly noted, 20 years
ago, by Hartemink, McBratney, and Cattle (2001). In
2001, the field of pedometrics and information systems
represented about 20% of published papers in the Geo-
derma journal, compared to less than 5% in 1971. This
increase came at the expense of qualitative soil genesis
and morphological studies, which in parallel decreased
rapidly in the same period. The same study showed that
modelling/simulation was the second most important
subject in 2001. No doubt that this trend is confirmed
today with the increase in computer facilities that we
have witnessed over the last two decades. The increase in
soil modelling using databases and statistical or algorith-
mic tools has led to a number of models describing a phe-
nomenon using soil data, which contain little or no soil
science knowledge, and which may well be conducted in
the absence of practising pedologists. In this regard, the
increased availability of soil data poses some challenges,
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as data can be accessed and analysed outside the context
in which they have been produced.

A prototypical example is found in Padarian,
Minasny, and McBratney (2019), where a global soil pat-
tern is predicted using online machine learning tools and
soil organic carbon data. As a means to avoid con-
straining data-sharing policies, an online platform
enables soil modelling without accessing the data. The
user is connected to the calibrated model, without infor-
mation on the data from neighbouring parties involved
in the modelling. In this vision, no pedological knowl-
edge is required for modelling, which precludes any con-
textualization of the prediction or data. This raises the
question: can anyone with a reasonable understanding of
computational techniques contribute to soil science,
without the need to contextualize the data, model and
results with pedological knowledge? Hudson (1992)
argued against this: it takes 2 to 3 years for a field soil sci-
entist to internalize the soil landscape relationships. The
possibility of having soil science studies carried out by
non-soil scientists raised concerns, echoed for example by
Basher (1997) or more recently by Walter, Lagacherie,
and Follain (2006): relationships found in soil data can
be misinterpreted or, perhaps more worryingly, not
flagged as deserving more attention. In many ways,
recent soil modelling studies, in particular those on digi-
tal soil mapping using machine learning, often bypass a
significant body of earlier literature and represent a nar-
row contribution to the understanding of the processes
that take place in the soil. The rhetoric of soil knowledge
production by computational scientists is blurred by
missing expertise that would ensure that data or models
are contextually interpreted. A compromise, perhaps
obvious but not less true, is found in the integration of
soil expertise and computational scientists in multi-
disciplinary research projects.

5 | THE CHALLENGE OF
FORMULATING EXPLANATIONS

By acknowledging that data-driven soil science harmo-
nizes with the longstanding nominalist view of soil sci-
ence, and that its pitfalls are rooted in empiricism, the
question that logically follows is how do soil scientists
obtain a scientific explanation from data? This
section focuses on the use of modelling techniques (i.e.
statistical and mathematical tools and models, data min-
ing) to detect patterns (e.g. Jorda, Bechtold, Jarvis, &
Koestel, 2015; Vos et al., 2019) in complex multivariate
databases, or to provide a valid and generalizable repre-
sentation of the reality, as a basis for making predictions
(e.g. in digital soil mapping by Behrens et al., 2014). Soil

scientists calibrate these models on data and use them to
formulate explanations in light of the existing knowledge.
With the increase in dataset size and complexity, there
has been a parallel (seemingly related) increase in model-
ling complexity to mine these stores of data. This poses
some challenges to the soil scientist. Usually, the objec-
tives of analysing the data and modelling are 1. to obtain
information and 2. to make predictions (Breiman, 2001).
Highly complex models, insofar as they are not overfitted,
are beneficial to detect a pattern and to make predictions,
but the increase in modelling complexity has made it dif-
ficult for the soil scientist to obtain information from the
model and thus explanations about the underlying struc-
ture of the soil system and process.

5.1 | Model complexity and the principle
of parsimony

On a global meta-database of tension infiltrometer mea-
surements, Jorda et al. (2015) used boosted regression
trees, a machine learning algorithm, to identify the key
environmental variables that determine saturated and
near-saturated hydraulic conductivity in undisturbed
soils. The authors found two different models, one with
seven parameters and the other with five parameters, but
almost equivalent in terms of accuracy. Using the princi-
ple of parsimony, they discarded the more complex
model. The principle of parsimony recommends that
from several competing models, one should select the
simplest. In other words, the representation of the reality
should be made as simple as possible. Parsimony is gen-
erally expressed in terms of number of adjustable param-
eters, but can also entail other criteria such as coherence,
or the possibility to obtain insights from the model. In
statistical modelling, parsimony is reached by a balance
between model complexity and accuracy (how well the
model agrees with the data). If the accuracy was the only
criterion for selecting a model, the best model would
reach each data point, thus containing many adjustable
parameters, and be highly complex. Soil scientists usually
refer to the parsimony principle when deciding which
model to choose (e.g. Jorda et al., 2015; Lark, 2001;
McBratney, Santos, & Minasny, 2003) using criteria such
as the Akaike information criterion or the number of
adjustable parameters. The simplicity of a model is seen
as a desirable feature. Should it be?

A simple model has three main advantages (Gauch
Jr, 2003). First, the model is easily interpretable and the
relationships among variables can be understood by the
user. Second, the number of simple models is generally
much smaller than the number of complex models. This
is related to Breiman's (2001) “Rashomon effect”: there
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exists an infinite number of complex models with similar
solutions, but often few simple models or a single simple
model. Third, a simple model is less flexible and hence
more vulnerable when compared to new observations; it
can be falsified or, perhaps as is often done in practice,
refined when confronted with the natural system under
study.

Faced with the desire to obtain explanations, soil sci-
entists may refrain from building complex models. When
using models on complex and large soil databases, one
may claim that because the soil system is complex, then
we also need complex models. We stress here that there
are no logical or epistemological reasons to use parsi-
mony as a guiding principle, nor can we affirm that a
model is plausible if it is simple (Sober, 1990). The parsi-
mony of models, and the ontological representation of
simple soil structures do not foreshadow the complexity
of the soil in nature (Gauch Jr, 2003). One should find
the right balance between parsimony and how the model
approaches the reality for the objective in hand (explana-
tion of the underlying soil process or pattern detection/
prediction). Parsimony only connects with model plausi-
bility within a context and assumptions. There is thus no
explicit demand for parsimony when exploring large
datasets, other perhaps than when choosing a more likely
and understandable model between several competing
models, ideally all being consistent with the existing ped-
ological knowledge.

5.2 | Correlation and causation

In their attempt to formulate explanations of the com-
plexity of the soil system, scientists are interested in dis-
covering mechanistic links between variables. Several
models have been developed to investigate potential
causal effects driving variation in soil properties. For
instance, Angelini (2018) used structural equation model-
ling to understand the causes of variation in soil proper-
ties and to test hypotheses of these relationships built on
previous knowledge. However, as the authors rightfully
noted, there is discussion on whether a statistical model
can truly reveal cause-effect relationships from observa-
tional data. In addition, causality in soil science is diffi-
cult to prove, especially as experimental confirmations of
causality can never be fully established in a natural soil
system. The first step in attempting to establish causation
is to find an association between variables through corre-
lation. The trained soil scientist is aware that association
does not imply that a variable is mechanistically related
to the change in another. Faced with the increase in
dataset size, false correlation is yet more likely to occur.
Calude and Longo (2017) have shown, for example, that

the ratio between correlation and causation is a function
of the sample size. In other words, as the sample size
increases, the likelihood of finding a correlation among
variables increases. The difference between correlation
and causation becomes more difficult to discern.

In practice, however, soil scientists search for empirical
correlations among data and use them as a heuristic to
guide research and to develop models. Two types of
models exist, the ones based purely on correlation among
data, and the ones based on the current theories and
known mechanistic links between variables. This is the
fundamental distinction made by Jenny (1941) between
state factor models (empirical, based on correlation) and
process models (based on mechanisms). The calibrated
models based on correlation are tested by comparing pre-
dictions and observations. If the model agrees with the
observations it is said that the model is validated. Other-
wise its structure can be refined or the model rejected.
This is often done in practice, for example when building
spectroscopic, mapping or hydrological models empirically
from data, but a model is never entirely confirmed by
observations (Oreskes, Shrader-Frechette, & Belitz, 1994);
it agrees to a certain degree and can be partially validated
using, for example, some quality of fit indices to measure
the predictive accuracy. The higher the accuracy, the more
faith is put in the representation of the reality made by the
model, or in the scientific explanations that we formulate
from it. This is what Hempel (1965) called the statistical-
inductive explanation. Hempel's principles are close to the
logic of abduction (Section 2), but instead of explaining a
phenomenon with laws, it is explained by probabilities
under statistical laws. The explanation of a phenomenon
is successful if the statistical law confers a high probability
to the description of the phenomenon to be explained. For
example, if soil carbon (the phenomenon to be described)
is predicted with high accuracy by a statistical model (the
statistical law) of the soil organic carbon variation (the
description of the phenomenon to be explained), then the
model can be used to provide an inductive-statistical
explanation of the soil organic carbon variation. Since a
scientific explanation can be formulated from a model
built on correlations among data, as is often done in prac-
tice, this means that the soil scientist can use the model to
explain, model which can be refined (e.g. by retaining
plausible correlations) as more knowledge of the system
under study becomes available.

5.3 | Interpreting and explaining data-
driven models

The previous section on model complexity suggests that
to formulate an explanation from data, the soil scientist
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is guided by the dilemma between accuracy and inter-
pretability. A highly complex model often best emulates
the underlying structure of the soil process but does not
reveal readily how the prediction has been made. The
exact relationship between input and output is obscure.
This is the case, for example, in machine learning models
composed of a large ensemble of decision trees (random
forest), or artificial neural network models composed of
potentially millions of adjustable parameters. These
models are referred to as black box since the complexity
of the inner relationships is beyond human understand-
ing. Faced with this dilemma, nearly all soil scientists
choose intepretability, for example to ensure the validity
of the relationships found among data with existing sci-
entific theories and laws (e.g. as in Häring, Dietz,
Osenstetter, Koschitzki, & Schröder, 2012) or as in
Behrens et al. (2014) to extract and reveal new knowledge
on soil formation. Resuming the example on soil hydrau-
lic conductivity from Section 5.1, Jorda et al. (2015)
selected the parsimonious model composed of five
parameters, and hence dropped two variables that had lit-
tle effect on prediction performance. The two variables
explained little, but were part of the soil hydraulic prop-
erty variation, and there was a rational reason, perhaps
mechanistic in nature, to keep them in the model. In this
dilemma between accuracy and interpretability, soil sci-
entists go for intepretability at the expense of model accu-
racy, but also at the expense of obtaining, perhaps
unexpected, new information from the data.

Breiman (2001) argued that posing the objective of
modelling as the dilemma between accuracy and inter-
pretability is framing the wrong question. We also argued
in this sense previously: there is no epistemological rea-
son to formulate parsimonious models. Recall that the
objective of modelling is to obtain information and to
make predictions (see Section 5). Interpretability is only a
means to obtain the information. Paraphrasing
Breiman (2001), a model does not need to be simple to
provide reliable information. In fact, complex models are
often more accurate than simple models, and hence carry
a better representation of the natural system under study;
that is, we can put more faith in accurate models and use
them to provide an inductive-statistical explanation of
the soil system under study, according to Hempel (1965).

There is apparent contradiction here: complex models
are more accurate than simple models and hence provide
more reliable information, but if the information cannot
be extracted (models are black boxes), do we really have
an explanation? We have seemingly accepted the exag-
geration that complex models, in particular machine
learning models, are black boxes. These models do not
evidently provide the same level of insight as simple
models. A single decision tree is intuitive for the human

but a stack of 500 trees is beyond human comprehension.
It is not the scope of this study to give an account of all
existing methods for model interpretation, but at the
higher level, one might distinguish model-specific or
model-agnostic methods. Both provide users with a set of
techniques to interpret highly complex models. Another
way to increase model interpretability is to move away
from connectionist models (e.g. neural networks) and go
towards evolutionist concepts where the emphasis is not
only on prediction but also on model structure search
and prediction (Beriro, Abrahart, & Diplock, 2014), for
example gene expression programming (Ferreira, 2001),
which reveals the model structure in the form of
equations.

The following theoretical considerations in pedology
illustrate this discussion. Pedologists usually use the two-
term soil scheme initially presented by Dokuchaev (1883):

soil forming factors! soils,

and explored later by Jenny (1941) (among others) in
the form S = f(clorpt), where S is the soil and the acro-
nym clorpt stands for climate, organisms, relief, parent
material and time, respectively. McBratney et al. (2003)
and Grunwald (2009) considered soil properties or classes
to be functions of external environmental factors such as
elevation or age. McBratney et al. (2003) stressed that the
approach is largely empirical and not theoretical. Causal-
ity of the factors on the soil property is not a prerequisite.
The form of the empirical quantitative function f is flexi-
ble and can accommodate non-linear relationships. In
the scheme soil forming factors!soils the only unknown
is the form of the function f, which can be a complex
model. In fact, the form of the function f is often
unknown, such as in most machine learning black-box
models. In this scheme, the pedologist usually attempts
to select either an interpretable (simple) model (e.g. as in
Behrens et al., 2014) or to devote all efforts to obtaining
high accuracy (as in Hengl et al., 2014). We previously
argued that the choice between accuracy and interpret-
ability is not judicious. When the model is accurate, it is
sensible to obtain information on the model that enables
interpretation of the underlying soil structure and pro-
cess. This opens avenues for obtaining new knowledge,
for example by using the scheme later proposed by Ger-
asimov (1984) instead, in which soil-forming factors
impact processes that are linked to soil:

soil forming factors! process! soils:

While the difference between the two schemes seems
modest because both admit that soil is dependent on soil
factors, the notion of process introduces evolutionary
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(genetic) concepts and theoretical considerations. Char-
acterizing the processes is possible when enough is
known about the functional relationship of the factor to
the soil, i.e. when information is obtained from an accu-
rate model by means of interpretation. When more is
known about the process, as per the solution found in
the model and by the refinement of it, the complex model
can gradually be replaced by a physical model of the soil
consistent with the body of scientific laws. This type of
approach has been proposed previously in the soil science
literature (e.g. by Yaalon, 1975).

6 | CONCLUSIONS AND OUTLOOK

A series of incremental but rapid changes in electronic
digital information and information technologies avail-
able for academic research have given the impression
that research engaging large and diverse amounts of data
is new to soil science. In this paper we have argued that
while it may seem revolutionary for some, soil science
has a long history of data-intensive and exploratory
efforts to generate knowledge from soil data. This is pre-
cisely because soil science, like other natural sciences,
started with an inventory of the various properties rep-
resenting the diversity and complexity of the soil. Work-
ing in a data-rich environment is thus not new to soil
scientists, but perhaps less so in subdisciplines of soil sci-
ences (e.g. pedology/pedometrics) with a longstanding
history of data collected from an observation of the
uncontrolled environment rather than from a controlled
and manipulated experiment.

Just as soil scientists were storing and classifying soil
data on pieces of paper and in physical archives in the
past, the available tools for present-day soil data storage
are computers and electronic databases. These electronic
databases are analysed simultaneously and remotely by
multiple users, but for all that the logic of data storage at
one location has not disrupted. The databases are still
geographically centralized in large research institutions
combining computer power, storage and large projects
bringing a constant stream of new data. Perhaps the
social landscape shows a sign of change. While citizens
have much contributed to the collection of soil data in
past years, the development of publicly available soil
databases and the accessibility of software provided by
personal computers increasingly encourage citizens to
analyse data and be involved in knowledge production.

What is typically seen as revolutionary in contempo-
rary data-driven science is to a large extent a change of
magnitude in the amount of data collected and the capac-
ity to analyse them with computational power. The soil
data are currently generated rapidly, in large amounts

and from multiple sources, leading to concerns on
whether they can effectively be combined. The methods
of analysing these data come to a large extent from the
use of computer power and complex statistical and algo-
rithmic solutions. In this “new” data-driven science, com-
puter experts are playing a role in the production of soil
knowledge by the analysis of data. It is no coincidence
that corollary to this increase, discourse in other fields,
such as in data science, is being made in soil science.
These claims, which do not hold for long in soil science,
are rooted in a radical form of empiricism expressing that
soil data analysis can be made free of any theory, hypoth-
eses or pedological knowledge.

In substance, there appears to be no major recent
change in the way soil scientists obtain a scientific expla-
nation from data. Finding correlations in soil data is at
best a starting point, useful in an exploratory phase to
generate hypotheses and to be used as heuristic to
develop more realistic, mechanistic models based on cau-
sation when knowledge increases. In the quest for expla-
nations on soil processes, soil scientists thus select simple
models at the expense of accuracy. Perhaps by framing
the problem differently, we may be tempted to use com-
plex models, often more accurate than simple models.
Complex models are more accurate and thus may provide
a better representation of the natural system under study.
This is a desirable feature when the data analysis tech-
nique aims to provide an inductive statistical explanation
of a soil process.

The recent use (or abuse) of data-driven scientific
research aided by formidable computer power has gener-
ated concerns to as a possible lack of new production of
knowledge or, perhaps more worryingly, a lack of field
and laboratory experience by young scientists. By ana-
lysing the epistemic challenges of the data-driven scien-
tific research in the light of the historical literature, we
found that there is a continuity of practices, some being
certainly amplified by recent technological changes, but
that the core methods of scientific enquiry from data, i.e.
the scientific methods for knowledge production, remain
largely unchanged.

Finally, we argue that this paper is an introductory
and thus necessarily incomplete analysis of the current
epistemological challenges of data-driven soil science.
More research is needed, in particular to analyse whether
data quantity makes a difference to the usual tools of
scientific inquiry, such as sampling. Usually, the soil
scientist selects a carefully-designed fragment of the envi-
ronment, called a sample. When the dataset is large
enough, or that nearly all possible data about a phenome-
non have been assembled, do we still need to do sam-
pling? This brings many questions, such as that of bias in
data collection, or that of the value of the information
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contained in data. Another area for future research is to
analyse the nature of understanding. In which extent the
users of data-intensive tools for data analysis (e.g.
machine learning) obtain a scientific explanation from
data. When a model returns information from data to the
user, how to discriminate the phenomenological feeling
of understanding, and the “epistemic” understanding
(McCain, 2016), which forms the basis of scientific expla-
nation? Assessing this difference would certainly make a
useful contribution to future soil science studies.
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