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A B S T R A C T

For decades scientists have produced maps of biological, ecological and environmental variables. These studies
commonly evaluate the map accuracy through cross-validation with the data used for calibrating the underlying
mapping model. Recent studies, however, have argued that cross-validation statistics of most mapping studies
are optimistically biased. They attribute these overoptimistic results to a supposed serious methodological flaw
in standard cross-validation methods, namely that these methods ignore spatial autocorrelation in the data.
They argue that spatial cross-validation should be used instead, and contend that standard cross-validation
methods are inherently invalid in a geospatial context because of the autocorrelation present in most spatial
data. Here we argue that these studies propagate a widespread misconception of statistical validation of maps.
We explain that unbiased estimates of map accuracy indices can be obtained by probability sampling and
design-based inference and illustrate this with a numerical experiment on large-scale above-ground biomass
mapping. In our experiment, standard cross-validation (i.e., ignoring autocorrelation) led to smaller bias than
spatial cross-validation. Standard cross-validation was deficient in case of a strongly clustered dataset that had
large differences in sampling density, but less so than spatial cross-validation. We conclude that spatial cross-
validation methods have no theoretical underpinning and should not be used for assessing map accuracy, while
standard cross-validation is deficient in case of clustered data. Model-free, design-unbiased and valid accuracy
assessment is achieved with probability sampling and design-based inference. It is valid without the need to
explicitly incorporate or adjust for spatial autocorrelation and perfectly suited for the validation of large scale
biological, ecological and environmental maps.
1. Introduction

In recent years, mapping studies have provided new insights into
continental and global patterns of biogeographical variables. Some
recent examples include global scale maps of soil fungi (Tedersoo et al.,
2014), bacteria (Delgado-Baquerizo et al., 2018) and nematodes (Van
Den Hoogen et al., 2019), landcover change (Song et al., 2018), forest
cover change (Hansen et al., 2013) and aboveground biomass (Baccini
et al., 2012), among others.

Commonly in these studies, the map accuracy is evaluated using
statistical measures that evaluate how close the predictions �̂�(𝑠) are
to the reality 𝑧(𝑠) for a set of locations 𝑠 ∈ , where  is the
area of interest, i.e. the population. In practice, the area of interest is
often discretized by overlaying it with a fine grid. Popular population
map accuracy indices are the mean error (ME), root mean squared
error (RMSE), the squared Pearson’s correlation coefficient (𝑟2) and the
Nash–Sutcliffe model efficiency coefficient (Nash and Sutcliffe, 1970).

∗ Correspondence to: Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia.
E-mail address: alexandre.wadoux@sydney.edu.au (A.M.J.-C. Wadoux).

These indices are computed either by collecting a new set of data or by
using the existing dataset for both model calibration and validation.

Collecting a new set of data is ideally done by probability sam-
pling. The sample data are used to estimate the map accuracy indices
through design-based statistical inference based on classical sampling
theory. This method is statistically sound and has been extensively
described in the statistical (Cochran, 1977) and environmental sci-
ence (e.g. De Gruijter et al., 2006; Gregoire and Valentine, 2007)
literature. But when data are scarce, it is sensible to use the available
data for both model calibration and validation (Burt et al., 2009). In
such case, the existing dataset is split into two subsets called calibration
and validation folds. The calibration fold is used to calibrate a mapping
model and make predictions whereas the validation fold is used to
estimate the map accuracy indices. This procedure can be repeated
several times, as in bootstrapping when multiple bootstrap samples
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with replacement are used for calibration and prediction, or as in cross-
validation (CV) (Hastie et al., 2009). In CV, the data are split randomly
into 𝐾 disjoint folds. Each fold is put aside in turn and used to evaluate
the predictions obtained from a model calibrated on the remaining 𝐾−1
folds. Conventionally, 𝐾 is set to 10 (10-fold CV), but 𝐾 can also be
equal to the sample size, as in leave-one-out CV. An advantage of CV
and other data-splitting strategies is that the existing data are used to
evaluate map accuracy, without the cost of additional sampling.

Several recent studies (Brenning, 2005; Le Rest et al., 2014; Roberts
et al., 2017; Ploton et al., 2020), however, contend that statistical vali-
dation of maps should account for spatial autocorrelation between data
points. Data collected at points that are geographically close generally
are more similar than at points that are geographically distant. As a
consequence, these studies claim that map accuracy indices as derived
using standard CV are biased because calibration points are not statis-
tically independent from validation points. This conception of model
validation has led to the recent development of CV techniques that
avoid spatial autocorrelation, such as spatial 𝐾-fold CV and buffered
leave-one-out CV (B-LOO CV). The study of Ploton et al. (2020), for
example, asserts that validation statistics should only be computed on
validation points that are spatially independent from the calibration
points, and found in an experiment on mapping the above-ground forest
biomass in central Africa that this resulted in quasi-null predictive
model performance.

Here we argue that spatial CV techniques presented by recent
studies on biological, ecological and environmental mapping (such as in
Le Rest et al., 2014; Ploton et al., 2020; Hengl et al., 2021, for example)
give rise to a misconception of statistical validation of maps in a spatial
context. There is a serious risk that practitioners misinterpret spatial
CV techniques and reject long-standing, standard and statistically valid
methods for assessing map accuracy. In the following, we explain
why we should not use spatial CV techniques for estimating map
accuracy indices and instead adhere to statistically rigorous methods
of validation via probability sampling and design-based inference. Our
theoretical argument is illustrated with a case study.

2. Evaluation of map accuracy with probability sampling

Map accuracy indices are defined as population parameters. The
RMSE, for example, as a finite population parameter is defined as
RMSE =

√

1
𝑁

∑𝑁
𝑖=1(�̂�(𝐬𝑖) − 𝑧(𝐬𝑖))2, i.e. the square root of the squared

rediction errors averaged over all 𝑁 units (i.e. grid cells) in the
population. Note that for infinite populations the map accuracy in-
dices are defined as an integral. In practice it is usually impossible
to compute the map accuracy indices, because one would need to
take a census of the whole population. Instead, a subset of 𝑛 units is
selected (where typically 𝑛 ≪ 𝑁), and this sample is used to estimate
the map accuracy indices (i.e. the population validation parameters).
If the sample is a probability sample, classical sampling theory can be
used to estimate these population validation parameters, using design-
based estimation (Stehman, 1999; De Gruijter et al., 2006; Gregoire
and Valentine, 2007; Stehman and Foody, 2009; Brus et al., 2011). This
has the important advantage that one can prove that the estimates are
unbiased and that valid confidence intervals can be computed. Proba-
bility samples have two characteristics: all units in the population must
have a positive probability of being selected, and these ‘‘inclusion’’
probabilities must be known for at least the selected population units
(points).

The most basic probability sampling design is simple random sam-
pling, in which case all samples of a given size (number of units) have
equal probability of being selected, and a design-based estimate of
the population RMSE is obtained by R̂MSE =

√

1
𝑛
∑𝑛

𝑖=1(�̂�(𝐬𝑖) − 𝑧(𝐬𝑖))2.
here are also more complex probability sampling designs exploit-

ng the spatial structure of the data, such as stratified random sam-
ling (De Gruijter et al., 2015), balanced sampling (Deville and Tillé,
2

004; Brus, 2015), and the local pivotal method (Grafström et al.,
012). These designs are often more efficient than simple random
ampling to estimate population parameters. Design-based estimators
f map accuracy indices are model-free and design-unbiased, i.e. over
epeated sampling with the design used to select a validation sample,
he average of the estimated map accuracy is equal to the true map
ccuracy.

Note that when validating by design-based inference, validation
ocations are allowed to be geographically close to calibration locations,
lso in a population with spatial structure. The prediction errors at two
ndependently selected locations are design-independent (i.e. when the
oints are selected independently from each other, Brus, 2021), regard-
ess of whether they are selected from a spatially structured population
r not (Gregoire and Valentine, 2007; Stehman and Foody, 2009; Brus,
021). This refutes the core message of several recent studies (e.g.
renning, 2005; Ploton et al., 2020), that spatial autocorrelation in-
alidates map accuracy assessment. Spatial autocorrelation need not
e explicitly incorporated in design-based estimation of the validation
ndices because in probability sampling the validation data are design-
ndependent. Several studies have used a probability sampling strategy
or map validation, for examples see Kempen et al. (2009), Olofsson
t al. (2012) and Boschetti et al. (2016).

. Evaluation of map accuracy with cross-validation

It is not always feasible to collect an additional probability sample
or map validation, given the available resources and time (Gregoire
nd Valentine, 2007; Duncanson et al., 2019). In such case, cross-
alidation can be used to obtain estimates of the map accuracy (Steele
t al., 2003). Cross-validation makes use of the calibration dataset,
hich typically is not a probability sample of the mapping area, so that

here is no possibility to determine how close the estimates are to the
opulation validation parameters.

In standard cross-validation using a non-probability calibration sam-
le we cannot make use of classical sampling theory to derive the
robability distribution of the estimation errors of the accuracy indices
nd, for example, cannot prove that the estimation is design-unbiased.
n practice cross-validation may approximate the population validation
arameters well, but this depends on the sample size and the distri-
ution of the sample locations across the study area. For example, if
ample locations tend to be spatially clustered and large parts of the
tudy area have low to zero sampling density, then the map accuracy in-
ices are likely to be over-optimistic. Computing map accuracy indices
ith standard CV is not ideal (ideally, probability sampling is used), but

he map accuracy indices obtained this way can still be useful. In many
ases, map accuracy indices estimated by standard CV strategies may
e close to the (unknown) population indices, but this is an assumption
hat cannot be verified in practice.

In spatial CV strategies, validation points are forced to be geo-
raphically distant from calibration points, by selecting validation folds
hat are assumed statistically independent (i.e. model-independent)
rom calibration folds. Commonly spatial partitioning (also known
s ‘‘blocking’’) and buffering, or a combination thereof, are used to
chieve independence. In spatial partitioning (spatial 𝐾-fold CV), the
eographic space is divided into 𝐾 spatially disjoint subsets. The par-
itions can be determined by a coarse square grid of 𝐾 cells or by
lustering the spatial coordinates of the data set into 𝐾 clusters. In
uffered leave-one-out CV (B-LOO-CV), observations that are within a
istance-based radius from a validation point are not considered for
odel calibration. This radius is usually taken to be larger than the

ange of a variogram computed on the whole data set, or as computed
n the residuals of this data set after a model is calibrated and model
redictions subtracted from the observations.

Spatial CV strategies remove entire portions of the geographic and
ence also the covariate space, causing under-representation of en-
ironmental conditions similar to those at validation locations. This
s particularly a problem for biological, ecological and environmental
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variables which are geographically structured: the environmental con-
ditions in the validation fold might be unseen in the calibration folds,
and the model is likely to predict outside the feature space covered by
the joint set of covariates. The map accuracy indices estimated in this
way are likely systematically and potentially severely over-pessimistic,
as would be the case if environmental conditions between validation
and calibration folds are very different.

Below we investigate the degree in which this occurs and illustrate
our theoretical arguments with a simple case study.

4. Case study

We built a random forest model for large-scale mapping of above-
ground forest biomass (AGB) for an area in the Amazon basin (Fig. 1a)
using a large set of ecological covariates as predictors. To do so, we
selected a large rectangular area (size 928 km × 1642 km) of above-
ground live woody biomass data (in Mg⋅ha−1) from the ‘‘Baccini’’
dataset (Baccini et al., 2012) as the response variable and source
of calibration data. This allowed us to compute the population map
3

accuracy indices and evaluate the various cross-validation approaches.
Note that there are no fundamental objections to using a proxy of the
true AGB as a response variable because for our purposes the only
requirement is that it must have spatial structure. The Baccini map
was aggregated to a spatial resolution of 1 km × 1 km. We prepared
a stack of 28 ecologically relevant covariates for the same extent,
representing mean climatic conditions, climate seasonality and extreme
conditions, relief, soil properties and six long-term average MODIS
bands. The list of covariates, their unit and source is provided in the
Supplementary Material. All covariates were either resampled using
bilinear interpolation or aggregated to conform with the grid of the
above-ground biomass map.

Considering the spatially exhaustive values of above-ground
biomass (AGB) as our population of interest, we repeatedly (500 times)
selected calibration samples of 500 grid cells (𝑛 = 500) using: (i) system-
atic random sampling; (ii) simple random sampling; and (iii) two-stage
cluster random sampling. For each sample, we paired the corresponding
500 AGB values and the stack of 28 covariates. We applied three cross-
validation (CV) strategies: (i) random 𝐾-fold CV; (ii) spatial 𝐾-fold CV;
Fig. 1. Overview of the study area and results of the evaluation of validation strategies. a Study area in the Amazon basin with values of the above-ground biomass, according
to the Baccini map (Baccini et al., 2012). b–d Error in estimates of the population RMSE (in Mg⋅ha−1) for calibration samples collected by systematic random (b), simple random
(c) and two-stage cluster random (d) sampling. Note that the horizontal grey line at 0 in b–d effectively refers to the population RMSE, because deviations from the population
RMSE are plotted. The sampling locations shown in the maps in b–d are one realization out of 500.
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and (iii) buffered leave-one-out CV (B-LOO CV). We also performed
design-based validation by repeatedly selecting a separate probability
sample of size 500 by simple random sampling without replacement.
For the two spatial cross-validation strategies (i.e. spatial 𝐾-fold CV
and B-LOO CV), we applied the same computational methodology as
in Ploton et al. (2020) and used an exclusion radius slightly larger
than the autocorrelation range of the AGB empirical variogram, in our
case 350 km. The random forest (RF) algorithm was used for modelling
and prediction, and the RMSE was estimated. Each population RMSE
was subtracted from the RMSE estimate. The population RMSE was
obtained by predicting the AGB by the RF model at all locations 𝑁
n the area, subtracting these predictions from the ‘‘true’’ AGB (i.e., the
accini map) and thus computing the population RMSE. We assessed
he error in the RMSE estimated from each sample by computing the
ifference between the estimated RMSE and the population RMSE. We
epeated the selection of the samples and the procedure for the four
alidation strategies 500 times to obtain the sampling distributions of
he RMSE estimation errors.

Note that we adopted a model-based approach for mapping, as
s nearly always done in practice. Selection of calibration locations
sing probability sampling designs was therefore not essential. We
nly did this to automate the repeated sampling and do so in a re-
roducible way. By assessing prediction performance for three very
ifferent sampling designs, our experiment evaluates the efficiency of
ifferent validation strategies for a range of spatial configurations of
cquired calibration data. The results are illustrative for both dispersed
nd clustered sampling scenarios, also when the calibration sample is
ot a probability sample, as typically is the case in biological, ecological
nd environmental mapping.

Fig. 1b-d shows that design-based estimation of the population
MSE is unbiased and that the estimates have little variation. These are
ttractive properties that show the superiority of design-based valida-
ion to evaluate the prediction performance of the mapping model and
stimate the map accuracy, but as noted before it requires probability
ampling from the population. Cross-validation using standard random
-fold CV is nearly unbiased for the systematic and simple random

ampling designs, but too optimistic in the case of clustered sampling.
he two spatial cross-validation methods are too pessimistic, with
-LOO CV severely overestimating the RMSE in all cases.

The pessimistic results of the spatial cross-validation methods are
ikely caused by over-representation of environmental conditions dis-
inct from the environmental conditions at the calibration points, and
nder-representation of environmental conditions similar to those at
he calibration locations. Standard 𝐾-fold CV was too optimistic in

case of clustered sampling because each validation point had nearby
calibration points, while most points in the map did not. This could
be remedied by using leave-cluster-out CV, which is another variant of
spatial CV, but this would likely overestimate the RMSE.

5. Discussion

Existing methods of map validation using probability sampling and
design-based inference are perfectly valid for map accuracy assessment,
without the need to adjust for spatial autocorrelation. These methods
provide design-unbiased estimates of the map accuracy, which cannot
be guaranteed by CV strategies (i.e. neither standard nor spatial CV).
Spatial CV strategies performed poorly and severely overestimated
the population RMSE in all sampling design cases considered in the
case study. The over-pessimistic results of spatial CV are essentially
caused by the fact that in this method only those parts of the mapped
area that are distant from calibration points are validated. Prediction
performance will tend to be poorer in subareas that have no nearby
calibration points. The map accuracy indices obtained this way are
systematically off, because of under-representation of environmental
4

conditions similar to those of the folds used in calibrating the model.
Spatial CV strategies are highly subjective and depend not only on
the sampling design on which the folds are defined, but also on the
method to determine the spatial partitioning (spatial 𝐾-fold CV) and
the radius (the distance of exclusion, in B-LOO CV). Further, spatial
CV strategies suffer from the fundamental problem of dealing with two
conflicting objectives: exclude validation data that are geographically
close to calibration data to achieve ‘‘spatial independence’’ (model-
based independence under a geostatistical model, i.e. with distances
larger than the variogram range), and avoid extrapolation in the geo-
graphic and covariate space. There seems to be no proper solution to
this paradox. The only sound way to validate a map is the use of proba-
bility sampling and design-based inference. Scientists and practitioners
can confidently proceed knowing that the map accuracy obtained by
standard methods based on sampling theory are not invalidated by
claims made in spatial CV studies. Spatial CV strategies (and standard
CV in case of clustered data) are not appropriate for map validation.
Spatial autocorrelation does not invalidate map accuracy assessment in
a design-based inference framework. For map accuracy assessment, the
design-based approach makes no assumptions on spatial autocorrela-
tion of prediction errors, whereas such assumptions are required in a
model-based approach, thus giving rise to discussions on the validity of
the estimated map accuracy.

Some studies on spatial CV claim to focus on the validation of the
mapping model instead of the validation of a map. We call for a better
articulation of what validating a mapping model means. Ploton et al.
(2020), for example, did not evaluate the strength of the relationships
between the response variable and the covariates, nor did they attempt
to explain the causal determinism of the spatial distribution of AGB.
They assessed the accuracy of the AGB map, using the RMSE as an
overall statistic of the map quality. It remains unclear what validation
of a mapping model means and how this differs from validation of a
map. This lack of definition causes confusion, so that there appears
to be a mismatch between the claims (i.e. validation of the mapping
model) and results (i.e. estimating map accuracy indices) in studies
on spatial CV (e.g. Brenning, 2005; Meyer et al., 2019; Ploton et al.,
2020). In mapping studies, the objective is to validate the map, i.e. to
assess the map accuracy. Map accuracy assessment is relevant in many
disciplines, some recent examples of which are validation of global
scale maps of soil fungi (Tedersoo et al., 2014), bacteria (Delgado-
Baquerizo et al., 2018) and nematodes (Van Den Hoogen et al., 2019),
landcover change (Song et al., 2018), forest cover change (Hansen
et al., 2013) and aboveground biomass (Baccini et al., 2012), among
others.

Finally, we stress that the methodology communicated in this article
for the validation of maps with probability sampling and design-based
inference is directly applicable to large-scale mapping studies. Strahler
et al. (2006) and Olofsson et al. (2012) give recommendations for
estimating the accuracy of global maps with sampling designs satisfying
the definition of a probability sample. Depending on the objective,
these designs typically use stratification or clustering to balance pre-
cision of regional map accuracy assessment and cost associated to the
collection of the validation data. The key aspect of large-scale map
accuracy assessment relies on the use of probability sampling designs
and design-based inference of the map accuracy indices. Examples of
studies using these strategies are McRoberts et al. (2019) and Stehman
et al. (2012) for the validation of a global biomass map and landcover
map, respectively. More efforts should be invested in this direction.

6. Conclusion

We have shown that spatial cross-validation strategies resulted in
a grossly pessimistic map accuracy assessment, and gave no improve-
ment over standard cross-validation. Both standard and spatial cross-
validation methods may provide biased estimates of map accuracy. In
our case study, spatial cross-validation strategies severely underesti-

mated the map quality, while standard CV overestimated it in case
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of clustered data. More importantly, studies of spatial cross-validation
propagate a widespread misconception on the statistical validation
of maps. Map accuracy ideally should be estimated with probability
sampling and design-based statistical inference. Such methodology and
inference is valid without the need to adjust for spatial autocorrela-
tion in the data. Scientists and practitioners can confidently proceed
knowing that the map accuracy obtained by standard methods based on
sampling theory are valid. Validation based on rigorous design-based
inference is also feasible for large-scale and global maps of biological,
ecological and environmental variables.
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