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A B S T R A C T

Hypotheses are of major importance in scientific research. In current applications of machine learning algo-
rithms for soil mapping the hypotheses being tested or developed are often ambiguous or undefined. Mapping
soil properties or classes, however, does not tell much about the dynamics and processes that underly soil genesis
and evolution. When the interest in the soil map is for applications in a context different than soil science, such
as for policy making or baseline production of quantitative soil information, the interpretation should be made in
light of this application. If otherwise, we recommend soil scientists to provide hypotheses to accompany their
research. The hypothesis is formulated at the beginning of the research and, in some cases, motivates data
collection. Here we argue that when applying data-driven techniques such as machine learning, developing
hypotheses can be a useful end point of the research. The spatial pattern predicted by the machine learning
model and the correlation found among the covariates are an opportunity to develop hypotheses which are likely
to require additional analyses and datasets to be tested. Systematically providing scientific hypotheses in digital
soil mapping studies will enable the soil science community to build on previous work, and to increase the
credibility of data-driven algorithms as a means to accelerate discovery on soil processes.

In recent years, there has been an increasing number of publications
using data-driven, empirical algorithms for digital soil mapping (DSM,
Lagacherie et al., 2006; Ma et al., 2019). In particular, machine learning
(ML) algorithms are popular for mapping soil properties or classes using
soil point information and a large number or environmental covariates
(Walter et al., 2006; Hengl et al., 2018). Typically these studies assess
and quantify the spatial variability of the soil using one or several ML
algorithms. These studies are performed with the explicit purpose of
evaluating spatial variation from a set of observations. This hinges upon
an empirical discovery of the relationships among covariates and a set
of observations, whereby the discovery is driven by the ML algorithm
and fundamentally relies on pattern recognition (Pennock, 2004).

Research in soil science traditionally relies on hypothesis testing or
development, in a deductive or inductive approach. Deduction is a
syllogistic logic, from the general (the theory) to the specific (the ob-
servations). The scientist holds a theory from an educated guess. From
this theory a hypothesis is formulated, and confrontation against ob-
servations is made to corroborate or refute it. For example:

All soil properties vary in the geographic space.
Soil organic carbon (SOC) is a soil property.
We deduct that SOC concentration varies in space.

Inductive reasoning, conversely, goes from the specific to the gen-
eral by inferring a theory or an explanation from the observations,
theory or explanation from which predictions are made to new ob-
servations. Thus:

In alkaline soils, SOC is stabilized through interaction with calcium.
Solonetz are alkaline soils.
We predict by induction that SOC in Solonetz is stabilized through
interaction with calcium.

In practice, there is a constant interplay between deduction and
induction, because a hypothesis derived by induction can be tested by
deduction. In soil science, both approaches are operating. One may start
with observations and develop possible explanations (induction) while
others may have a possible explanation for a phenomenon and test it
using a controlled experiment or by collecting new data (deduction).

In current use of ML for DSM, however, it is not clear which ap-
proach is taken since hypotheses are not developed nor tested. A map of
the topsoil organic carbon might reveal patterns of location-specific
concentration in an area, but the fundamental problems of, for example,
what are physical and chemical stabilization mechanisms, why pedo-
climatic conditions impact SOC protection and how the organic mate-
rial interacts with other soil elements, remain beyond questions.
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Predicting a pattern is different from providing an explanation (Kitchin,
2014). Explanation requires contextual and pedological knowledge on
the interaction of the soil property with the environmental covariates.
The danger in ML for DSM is to have research driven by the technique
(an algorithm is available) or by the data availability rather than by a
scientific question. In fact, most authors on studies on ML for DSM
refrain from formulating a hypothesis. More worryingly, they consider
the predicted map an end in itself.

In some specific cases, the soil map is of special interest when
considered in a context other than soil science. For land planning, the
map suggests which management practices are the most appropriate for
field-specific soil conditions. In environmental protection, the soil map
advises stakeholders and drives policy making. If the production of
quantitative soil information serves for another purpose than increasing
the understanding of soil, this is yet rarely, if ever, made clear in sci-
entific publications. We argue that, in this case, the study should focus
on describing the context with examples on the application of the map
in that context. For example, maps of the temporal evolution of the SOC
may well be confronted to a baseline SOC map (e.g. the coarse default
IPCC Tier 1 global map, as is done in Heuvelink et al. (2020)), with
examples of local actions to be taken for scenarios of SOC concentration
change over time.

When the objective is to produce scientific knowledge and under-
stand, however, providing a map is not sufficient. The question is then
the type of scientific reasoning that is adopted (Fig. 1). ML algorithms
are empirical, which supposes an inductive reasoning (i.e. from the data
to the theory). Because of their complexity, however, calibrated ML
models preclude analysis of their structure and the process that un-
derlies the prediction. This hinders inductive reasoning because no
theory can be readily extracted from a calibrated ML model. We argue
that the reasoning behind data-driven algorithms relies more on ab-
duction (Peirce, 1960), which is a similar, but weaker form of inference
compared to induction. While induction relies on the data to infer a
theory, abduction relies on data to infer a possible explanation for a
phenomenon (Miller and Goodchild, 2015). Thus abduction begins with
data accumulation independently of any surmise. A data-driven algo-
rithm then interrogates the data to tease subtle correlations that are
often inherently invisible to the human because of the multivariate and
non-linear nature of the data. The discovered pattern might ultimately
serve for the development of new hypotheses (Fayyad et al., 1996;
Hazen, 2014).

In practical terms this means that the digital soil map should not be
the end, but rather the starting point of the analysis. The revealed
pattern and calibrated ML model should trigger questions which will
certainly require further analysis and data to be answered. In fact, there

is already a hypothesis behind the model construction. The hypothesis
is that soil spatial variability is driven by a set of environmental vari-
ables representing soil formation. The veracity of this hypothesis is
offset by the problem of the spatial scale. The drivers of some processes
change with scale, and, for example with SOC, we may not be able to
identify from the predicted map the mechanisms of stabilization (e.g.
we may not have input information on the controlling factors at profile
scale, like micro-climate or metal oxides). On a number of occasions,
formulating a hypothesis at the beginning of the study (deductive
reasoning) is not even possible because the scientist uses legacy data
which were originally collected for purposes other than the present
mapping exercise, and in fact often with an unknown (to the mapper)
purpose. This obliges the researcher to adopt abductive reasoning for
scientific knowledge production, where first the ML algorithm is used to
find patterns and predict from the store of data and secondly, hy-
potheses are developed from the fitted relationships between the point
soil information and the environmental covariates, by connecting pat-
terns to possible processes. For example, more SOC in clayey areas or in
natural vegetation vs. less SOC in cultivated areas triggers some as-
sumptions and hypotheses on the mechanisms behind SOC stabilization.
In this sense, ML is used as a “hypothesis discovery” tool (Wadoux et al.,
2020).

We conclude on the importance that studies using ML for DSM
clarify their objective. When the objective is to produce quantitative
soil information, the context and applicability of the map in this context
should be then elucidated. When, conversely, the objective is to in-
crease our scientific understanding of soil formation and genesis, hy-
potheses should be proposed. When using data-driven algorithms such
as ML, it is sensible to let the algorithm find the correlation in the data,
and to analyse the pattern with the ambition to develop potential
questions worthy of further investigation. In this sense, one would take
full advantage of the data-driven algorithm which searches for pattern
in datasets and can reveal previously undetected correlations. In short,
let the algorithm find the pattern and the soil scientist the hypotheses
that follow.
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Fig. 1. Illustration of the path followed by the scientist using machine learning
algorithm for digital soil mapping. The scientist must decide whether the ob-
jective of the study is a) an application, or b) for scientific purpose by abductive
reasoning. In a) the map is for application in a context different than soil sci-
ence while in b) the objective is the development of plausible hypotheses from
the predicted pattern and the correlations found in the data by the machine
learning model.
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