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A B S T R A C T   

Understanding the spatial variation of soil properties is central to many sub-disciplines of soil science. Commonly 
in soil mapping studies, a soil map is constructed through prediction by a statistical or non-statistical model 
calibrated with measured values of the soil property and environmental covariates of which maps are available. 
In recent years, the field has gradually shifted attention towards more complex statistical and algorithmic tools 
from the field of machine learning. These models are particularly useful for their predictive capabilities and are 
often more accurate than classical models, but they lack interpretability and their functioning cannot be readily 
visualized. There is a need to understand how these models can be used for purposes other than making accurate 
prediction and whether it is possible to extract information on the relationships among variables found by the 
models. In this paper we describe and evaluate a set of methods for the interpretation of complex models of soil 
variation. An overview is presented of how model-independent methods can serve the purpose of interpreting 
and visualizing different aspects of the model. We illustrate the methods with the interpretation of two mapping 
models in a case study mapping topsoil organic carbon in France. We reveal the importance of each driver of soil 
variation, their interaction, as well as the functional form of the association between environmental covariate 
and the soil property. Interpretation is also conducted locally for an area and two spatial locations with distinct 
land use and climate. We show that in all cases important insights can be obtained, both into the overall model 
functioning and into the decision made by the model for a prediction at a location. This underpins the importance 
of going beyond accurate prediction in soil mapping studies. Interpretation of mapping models reveal how the 
predictions are made and can help us formulating hypotheses on the underlying soil processes and mechanisms 
driving soil variation.   

1. Introduction 

Understanding the spatial variation of soil properties has become 
central to many sub-disciplines of soil science. Digital soil mapping 
(DSM) techniques can be used for this purpose. Commonly in DSM 
studies, statistical or non-statistical models are calibrated to exploit the 
quantitative relationship between measured values of a soil property 
and a set of environmental covariates of which maps are available, such 
as satellite imagery and terrain attributes. These models are used to 
predict the soil property at unobserved locations and to identify and 
expose the importance of environmental factors in the soil property 
spatial variation. Recent examples of studies using this approach are 
Quist et al. (2019) for mapping soil nematodes and Heuvelink et al. 
(2021) for mapping soil organic carbon in space and time. 

Since early soil mapping studies rooted in classical statistics and 
design-based inference in the 70s, and based on geostatistics in the 80s 
(Heuvelink and Webster, 2001), the field has gradually shifted attention 
towards more complex statistical and algorithmic tools from the field of 
machine learning. Accuracy of such models is often higher than that of 
classical models. They are also particularly useful in situation where the 
relationship between the soil property and environmental covariates is 
too complex to be modelled mechanistically or with simple statistical 
models. However, popularization of complex models of soil variation 
was made at the expense of understanding why the soil varies the way it 
does. Insight into the functioning and structure of the models are diffi-
cult to obtain, so that these models are often referred to as “black boxes”. 
Examples of such models are random forest, support vector machines 
and neural networks. We refer to Hastie et al. (2009) for an overview. 
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In soil science, several attempts were made to obtain insights from 
complex models. The relative effect of environmental covariates on 
model prediction is usually characterized by model-specific variable 
importance statistics such as through the mean decrease in impurity for 
tree-based models (as is done in Vos et al., 2019 for example), or by 
calculating the partial dependence of the prediction to environmental 
covariates (e.g. Zeng et al., 2017; Ottoy et al., 2017). For artificial neural 
networks, the Garson’s algorithm or the magnitude and direction of the 
connection weights between neurons give indication on the variable 
importance (Olden and Jackson, 2002). An example in soil mapping is 
Rivera and Bonilla (2020). While valid and useful to obtain insights into 
complex models of soil variation, these methods are model-specific, i.e. 
they preclude comparison between models (Wadoux et al., 2020). A 
number of “model-agnostic” or model-independent interpretation 
methods have recently been developed outside soil science, in the sta-
tistical and machine learning literature. This is evidenced by textbooks 
specifically addressing model interpretation (e.g. Molnar, 2020; Biecek 
and Burzykowski, 2021). Model-independent means that these model 
interpretation methods are applicable to any model. It is worthwhile to 
introduce these recent developments, and to present a strategy for the 
interpretation of complex soil mapping models. This was also recently 
highlighted as one of the most pressing pedometric research topics 
(Challenge 3, Wadoux et al., 2021). 

At the higher level, one may distinguish between local and global 
model interpretation (Molnar, 2020). For mapping purpose, a local 
interpretation is appropriate when the objective is to evaluate how 
prediction to a single spatial location is made. It is indeed sensible to 
assume that the importance of certain environmental factors vary from 
one location to another, and between regions. A global interpretation, 
conversely, provides insights into the overall model functioning. Global 
methods expose the importance of each driver of spatial variation, their 
interaction, as well as the functional form of the association between 
environmental covariate and the soil property. In practice global and 
local methods are used jointly to interpret and visualize differentiable 
aspects of the model. 

This paper is structured as follows. A first part introduces local and 
global interpretation methods for use in mapping studies. Such methods 
can be applied to any model (i.e. they are model-independent), although 
in practice it is not always sensible to apply them on simple models 
whose structure is readily interpretable (e.g. linear regression). The 
second part of the paper illustrates the methods for the interpretation of 
two models in a case study mapping topsoil organic carbon in France. 
Finally, we discuss in a third part the limitations of interpretation 
methods, possible alternatives, and summarize the utility of the methods 
as well as their pros and cons in a table. 

2. Interpretation methods 

Consider the soil property of interest Y modelled at any location s in 
the study area A by Y = f(X) + ε, where f is the regression function that 
yields Y given values of one or more dependent variables X and ε ∈ R is a 
random error. Statistical regression techniques seek to estimate the form 
of the function f to make a prediction Ŷ = f̂ (X) where the statistical 
model f̂ is estimated by minimizing the expected squared error term 

E
[
(Y − Ŷ)

2
]
. 

Let y(si) be n measurements of Y, si (i = 1,…, n; si ∈ A ) and X ∈ Rn×p 

be the covariate matrix of size n × p where p is the number of environ-
mental predictors. We denote xi and xj the ith row-vector and the jth 

column vector of X, respectively, and xi,j a scalar value at row i and 
column j. We make no assumption on the functional form of ̂f and treat it 
as a “black-box”. Hereafter, we describe methods to interpret the cali-
brated regression model ̂f and illustrate them with the data and support 
vector machine model from Wadoux et al. (2022), Section 4.2. 

2.1. Covariate importance with permutation 

Covariate importance obtained by permutation is a popular method 
to quantify the relative importance of an individual covariate or of a 
group of covariates on model prediction. A covariate is important if 
perturbing its values affects model prediction error: the larger the 
change in prediction error, the more important is the covariate. Pre-
diction error is quantified by the error function ℓ( f̂ (X),y), where y is the 
n vector of observations. Error function ℓ( f̂ (X), y) is usually the root 
mean square error (RMSE) or modelling efficiency coefficient (MEC, 
Janssen and Heuberger, 1995). Covariate importance is estimated with 
the following steps (Breiman, 2001; Fisher et al., 2019):  

1. Estimate error function ℓ( f̂ (X),y).  
2. For each covariate j = 1,…,p:  

(a) Create modified (denoted by the asterisk *) covariate matrix X* 

by permutation of the values in the jth column.  
(b) Estimate error function from prediction made with the permuted 

covariate matrix ℓ( f̂ (X*),y).  
(c) Obtain covariate importance for the jth covariate by the ratio 

ℓ( f̂ (X*), y)/ℓ( f̂ (X), y) or the difference ℓ( f̂ (X*),y) − ℓ( f̂ (X),y). 

Permutation of the covariate matrix involves randomness and is 
usually repeated to obtain a distribution of the importance metric. Fig. 1 
shows an example of permutation covariate importance using the ratio 
of RMSE. The technique can be extended to measure the importance of 
group of covariates, by permuting the group of covariate simultaneously 

Fig. 1. Example of a covariate importance with permutation assessed by the 
ratio of RMSE. The black dots represent the mean value of 100 permutations 
and the lines the 90% confidence interval. Data and model from Wadoux et al. 
(2022), Section 4.2). 
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instead of a single covariate. 
Calculation of covariate importance with permutation is computa-

tionally efficient as it does not require re-calibrating the model at each 
permutation. In case where covariates are dependent, however, the 
values obtained by permutation might be misleading and result in 
incorrect ranking of importance. In this situation, it is sensible to 
permute group of correlated covariates instead of each individual co-
variate. An extensive comparison of the impact that correlated cova-
riates have permutation importance is given by Hooker et al. (2021). 
When covariates are correlated, alternatives to permutation importance 
are the conditional permutation strategy (Strobl et al., 2007; Fisher 
et al., 2019; Watson and Wright, 2021) and the dropped variables 
importance (Lei et al., 2018). 

2.2. Individual conditional expectation 

Individual conditional expectation (ICE, Goldstein et al., 2015) plots 
shows one line per location indicating how the prediction for that 
location changes when a covariate changes. Each line in the ICE plot is 
computed by fixing the values of all covariates except the covariate of 
interest. The covariate of interest for that location is then iteratively 
replaced with different grid values along the range of the covariate of 
interest. Model predictions are computed for these newly created ver-
sions of the location. The results are then plotted as a line with covariate 
value on the x-axis and predicted value on the y-axis, representing the 
influence of that covariate on the prediction of the chose location. The 
ICE plot usually consists of many lines for different locations. 

In statistical terms, consider the subset of covariates XS of X 
composed of l < p covariates, and XC its complement so that f(X) =

f(XS ,XC ). The subset XS usually contains one or two covariates (i.e. 
l ≈ 1, 2). For any location in A with covariate values (xiS , xiC ) and 
calibrated model ̂f , an ICE curve ̂f ICE shows model predictions for a grid 
of xiS while keeping fixed the values of xiC (Fig. 2a). 

When comparing ICE curves, it is convenient to center the individual 
ICE curves to a baseline value. Without centering, it can be difficult to 
visually track differences in covariate effects. Centering makes the ICE 
curves comparable. The centered ICE curves show the partial depen-
dence of the predicted value at a location to a covariate, expressed in 
terms of difference to the baseline value. The centered ICE curve is 
expressed as: 

centered f̂ ICE = f̂ ICE − f̂ (x0, xiC ), (1)  

where x0 is the baseline value, usually the minimum, maximum or 
average of the values in the calibration dataset (Fig. 2b). 

ICE curves are an intuitive way to explore the effect of covariates to 
individual spatial locations. ICE curves can further be computed for 
group of spatial locations within an area, and their average value (i.e. 

their partial dependence plot, see also Section 2.3) compared to that of 
another area. This may provide insight into local or regional dependence 
to a covariate. However, ICE are also calculated from the marginal co-
variate distribution and are thus they are reliable only when covariates 
are independent. More information on this is provided in Section 2.3. 

2.3. Partial dependence plots 

Partial dependence plots (PDP) show how the model prediction be-
haves on average as a function of one or more covariates. This illustrates 
the effect of these covariates after averaging the effect of other cova-
riates included in the model. The partial dependence function fPDP of 
f̂ (X) on XS for xS is formally expressed as the expected value of the 
model prediction over the distribution of the covariates in the subset C 

(Friedman, 2001): 

fPDP(xS ) = EXC
[ f̂ (xS ,XC )]. (2) 

In practice the numerical integration required to estimate the mar-
ginal distribution of XC is approximated by averaging over the n 
observation locations: 

f̂ PDP

(

xS

)

=
1
n
∑n

i=1
f̂

(

xS , xiC

)

, (3)  

where x1C , x2C ,…, xnC are the row-vectors of XC . Eq. 3 shows that the 
PDP of the calibration dataset is the average of the n ICE curves. 
Accordingly, Fig. 2a-b show the PDP of woody biomass on SOC as 
average of the n ICE curves. Fig. 2c is an example of two-dimensional 
PDP (i.e. for l = 2). 

PDP are easy to implement and represent an intuitive way of inter-
preting a model. While PDP can be computed for subset S of any size, 
only one or two covariates can reasonably be displayed. Note also that 
dependence among covariates in XS and XC can produce a PDP that is 
misleading. When covariates are dependent, taking the marginal 
expectation of one covariate leads to consider points that lie outside the 
multivariate joint distribution. We recommend testing independence 
using, for example, a combination of scatter plots and statistics such as 
the Spearman’s rank correlation coefficient. The accumulated local ef-
fect (Section 2.4) is a sensible alternative to the PDP when covariates are 
dependent. Both marginal (Eq. 2) and conditional expectations are the 
same if covariates in XS and XC are uncorrelated (p. 370 in Hastie et al., 
2009). 

2.4. Accumulated local effect 

An alternative to the PDP when covariates are dependent is the 
accumulated local effect (ALE, Apley and Zhu, 2020). The ALE shows the 
effect of changing the values of a covariate on the soil property. 

Fig. 2. Examples of a) individual conditional expectation (ICE) curves (in black) for woody biomass against soil organic carbon (SOC) content. The yellow curve it 
the partial dependence plot (PDP). In b), ICE curves and the PDP are centered at the minimum of the covariate value (i.e. at a woody biomass value of 20). Plot c) 
shows the two-dimensional PDP of woody biomass against elevation. Data and model from Wadoux et al. (2022), Section 4.2. 

A.M.J-C. Wadoux and C. Molnar                                                                                                                                                                                                           



Geoderma 422 (2022) 115953

4

Formally, the ALE is defined as the accumulated derivative of the pre-
diction function over the conditional distribution of the soil property, 
starting at the lower bound z0,S . 

fALE

(

xS

)

=

∫ xS

z0,S

EXC |XS

[
f̂

S (
XS ,XC

)⃒
⃒XS = zS

]
dzS , (4)  

where f̂
S
(

xS , xC

)
=

δ̂f (xS ,xS )

δxS 

is the derivative of the prediction func-

tion with respect to covariates xS. For a single covariate (i.e. S = {j}), 
the ALE is approximated as follows. Let the range of a covariate xj be 
partitioned into K intervals beginning with starting point z0,j. Nj(k) is the 
k-th interval with upper boundary zk,j and lower boundary zk− 1,j, i.e. ]
zk− 1,j,zk,j], and nj(k) is the total number of observations of xj within the 
interval. Scalar xi,j is the i-th observation of the p-vector xj and xi,− j the 
values of the other covariates for this observation. Eq. 4 can be 
approximated by a step function over the K intervals: 

f̂ ALE

(

xj

)

=
∑kj(xj)

k=1

1
nj
(
k
)
∑

i:xi,j∈Nj(k)

[
f̂
(
zk,j, xi,− j

)
− f̂
(
zk− 1,j, xi,− j

)]
, (5)  

where kj(xj) is the interval that xj falls into. The right-hand side of Eq. 5 
is the difference in prediction computed over the range ]zk− 1,j,zk,j], which 
quantifies the effect of the covariate for an individual observation within 
the interval. The sum of the individual effects within the interval is 
divided by the number of observation in the interval to obtain the local 
average difference of prediction. The left-hand sum of Eq. 5 defines the 
accumulated local effect over all intervals. The formula in Eq. 5 is a step 
function which can be smoothed by linear interpolation. The ALE is 
centered at zero by: 

centered f̂ ALE
(
xj
)
= f̂ ALE

(
xj
)
−

1
n

∑n

i=1
f̂ ALE

(
xi,j
)
, (6)  

so that a point on the ALE curve is the difference to the average pre-
diction of the model. For the estimation of two-dimensional ALE, the 
local effect is accumulated over rectangles instead of intervals. Refer to 
Apley and Zhu (2020), Eq. 13–16 for the equations describing the two- 
dimensional ALE and see Chapter 5 in Molnar (2020) for more details on 
the difference between PDP and ALE. An example of one and two- 
dimensional ALE plot is shown in Fig. 3. 

Note that interpretation of the two-dimensional ALE plot is different 
from that of a PDP. ALE is formally interpreted as being the centered 
difference in prediction (i.e. the effect) when the observations within an 
interval are moved from one border of the interval to another other. 
Fig. 3a shows the effect of woody biomass on SOC for a range of values of 
woody biomass, and compared to the average prediction. Fig. 3b shows 
the pure interaction effect of woody biomass and elevation on SOC 
compared to the average prediction. For example, the ALE estimate of 
woody biomass in Fig. 3a illustrates that for large values of woody 
biomass (i.e. greater than 300 Mg/ha), the predicted values of SOC are 
lower by nearly 20 dg/kg compared to the average prediction. 

The estimates of ALE tend to be more robust than the PDP for 
correlated covariates, because of averaging and accumulating the local 
effect over the conditional distribution. However, this comes at the 
expense of having a more localized interpretation (within intervals), and 
possibly non-intuitive interpretations for some data-generating pro-
cesses (Grömping, 2020). 

2.5. Interaction between covariates 

Interaction between covariates can be estimated with the H-statistic 
(Friedman and Popescu, 2008). Interaction is the variation that remains 
unexplained after summing the individual effects of the covariates on 
the model prediction. In other words, there is interaction when the 

combination of two covariates explains more of the data variance than 
the sum of these same two covariates taken separately. The H-statistics 
identifies the strength of the interaction, either between two covariates 
(two-way interaction) or between a covariate and all other combinations 
of covariates (total interaction). The individual covariate effect is 
measured by the PDP (Section 2). In a two-way interaction, the H-sta-
tistic measures the difference caused by the sum of the two individual 
covariates PDP, compared to the PDP of the combined two covariates. 
To measure the total interaction, the PDP of a single covariate is 
compared to that of the entire set of covariates. In each of the cases, the 
H-statistic is the amount of variance explained by the difference, and is 
an indication of the strength of the interaction. The interaction between 
two covariates (x1, x2), i.e. two-way interaction, is measured by the H- 
statistics as: 

H2
12 =

∑n

i=1

[
f̂ PDP

(
xi,1, xi,2

)
− f̂ PDP

(
xi,1
)
− f̂ PDP

(
xi,2
)]2

∑n

i=1
f̂

2
PDP

(

xi,1, xi,2

) . (7) 

The interaction between a single covariate xj with all combinations 
of covariates is: 

H2
j =

∑n

i=1

[
f̂
(
xi
)
− f̂ PDP

(
xi,j
)
− f̂ PDP

(
xi,− j

)]2

∑n

i=1
f̂

2
(

xi

) . (8) 

The H-statistics is dimensionless and usually between 0 and 1, but 
can exceed one if the variance of the two-way interaction exceeds the 

Fig. 3. Estimates of a one-dimensional accumulated local effect (ALE) plot of 
woody biomass on SOC content (a), and two-dimensional ALE of woddy 
biomass and elevation on SOC (b). Data and model from Wadoux et al. (2022), 
Section 4.2. Note that the ALE are centered at zero, so that each point of the 
ALE curve is the difference to the average prediction. 

A.M.J-C. Wadoux and C. Molnar                                                                                                                                                                                                           



Geoderma 422 (2022) 115953

5

variance of the 2D-PDP (e.g. due to uncertainty in the estimation). A 
value close to 0 indicates no interaction, whereas a large value means 
that interaction between the covariates explains most of prediction 
variance. Fig. 4 shows an example visualization for the total interaction 
between a set of covariates. 

The H-statistic has valid theoretical underpinning through the 
decomposition of the PDP, and can detect interaction between an arbi-
trary number of covariates. Further, it is dimensionless, which makes 
comparison possible between group of covariates and models. However, 
as for the PDP the H-statistic is sensitive to deviation from the 
assumption of independence between covariates, and is computationally 
expensive to estimate when the number of covariates is large. 

2.6. Surrogate modelling 

A surrogate model is a simple and interpretable model that is cali-
brated to approximate the prediction of a black-box model. In surrogate 
modelling, the prediction model ̂f which yields prediction of Y with X is 
approximated by calibrating a simple model g on the n prediction. Model 
g is interpretable, usually a linear model or a regression tree. The quality 
of the surrogate model g is evaluated by calculating validation statistics 
that compare the prediction made by the model ̂f to that made by model 
g, for example the modelling efficiency coefficient (Janssen and Heu-
berger, 1995): 

MEC = 1 −

∑n

i=1
(ŷ(si) − ŷ*

(si))
2

∑n

i=1
(ŷ(si) − ŷ)2

, (9)  

where ŷ denote the predicted soil property at location si by model ̂f , and 

ŷ* is the predicted value of ŷ by model g at the same location. A MEC 
value of 1 indicates that the surrogate model is a perfect predictor of the 
values predicted by the black box model, whereas a value of 0 indicate 
that the surrogate model is as good predictor as the mean or the original 
predicted values. Note that the MEC can be negative, in which case the 
model is not a useful predictor of the soil property. 

The main advantage of surrogate modelling lies in the intuitive 
interpretation of the model for non-specialists. There is also flexibility in 
the choice of surrogate model, usually a linear model or simple decision 
tree. Note that the surrogate model is an approximation of the predicted 
values, and thus interpretation should be made cautiously if the variance 
explained by the surrogate model (as indicated by the MEC) is insuffi-
ciently high. To date there is not clear cut-off value of the MEC for which 
we can be confident that the surrogate model is sufficiently close to the 
model it approximates. 

2.7. Shapley values 

Shapley values (Shapley, 1953) originate from coalitional game 
theory. In a game where a prediction is the “payout”, Shapley values aim 
to fairly distribute the payout among the covariates. Compared to the 
other methods, Shapley value is a local method, designed to explain 
individual predictions. However, Shapley values can be combined to 
create global interpretations. Recall that a covariate subset is S , and is 
composed of l < p covariates. S ⊆ {1,…, p}⧹{j} refers to any subset of 
covariates which excludes covariate j. The Shapley value ϕ0,j for co-
variate j for a data point x0 (not necessarily from the original data set) is 
given by: 

ϕ0,j =
∑

S ⊆{1,…,p}⧹{j}

|S |!(p − |S | − 1)!
p!

(
f̂

*(
xi,S ∪{j}

)
− f̂

*(
xi,S

) )
, (10)  

where |S | is the size of the subset which excludes the jth covariate, S ∪

{j} is the subset S with the jth covariate added, and f̂
*
(xi,S ) =

EXC
[ f̂ (xi,S ,XC )] is the prediction function where covariates not con-

tained in S are marginalized (similar for S ∪ {j}). Recall that p is the 

number of covariates. Then f̂
*(

xi,S ∪{j}
)
− f̂

*(
xi,S

)
can be interpreted as 

marginal contribution to the prediction when adding covariate j to the 
subset of covariates S . The right hand-side of Eq. 10 is the marginal 
contribution for a subset of covariates, whereas the left hand-side is a 
weighted average, giving equal weight to each of marginal contributions 
of all possible subsets of covariates. The contribution of a covariate to 
the prediction of a single spatial location is then given by ϕ0,j. 

The exact solution to Eq. 10 requires estimating the sum of the 
marginal contribution over 2p − 1 combinations of covariates, which is 
computationally inefficient if the number of covariates is large. 
Štrumbelj and Kononenko (2014) and Lundberg and Lee (2017) pro-
posed estimation methods to reduce the computational cost. Štrumbelj 
and Kononenko (2014) introduced an approximation algorithm for Eq. 
10 based on Monte-Carlo sampling. They further approximate the co-
variate effect on the prediction by integrating over the n observations of 
the calibration dataset. Lundberg and Lee (2017), reduce estimation of 
Shapley values as the optimal solution of a (local) weighted linear least 
squares regression (called KernelSHAP). Hereafter, Shapley values are 
estimated by the algorithm presented in Štrumbelj and Kononenko 
(2014). 

A Shapley value is interpreted as the average contribution of a co-
variate to the prediction, in the unit of the soil property. Shapley values 
are commonly used to evaluate the individual contribution of each co-
variate to the prediction of the soil property at a particular location (i.e. 
local interpretation), compared to the average prediction of the cali-
bration dataset (Fig. 5c). The absolute value of the Shapley values for 
individual observations in the calibration dataset can be summed to 
obtain an overall covariate importance, see also Section 2.1 and Fig. 5a 

Fig. 4. Estimate of the total interaction (Eq. 8) between 14 covariates used for 
prediction of SOC. Data and model from Wadoux et al. (2022), Section 4.2. 
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for an example). Note, however, that overall covariate importance ob-
tained by permutation is based on decrease in model accuracy whereas 
covariate importance based on Shapley values shows the overall 
contribution of the covariates to the prediction of the calibration data-
set. Finally, the average of Shapley values in the calibration dataset for a 
covariate plotted against the covariate values is an indication of the 
partial dependence (Fig. 5b). 

3. Illustration with soil data 

We built and interpreted two models for mapping soil organic carbon 
content in France. We used as calibration sample (n = 2947) composed 
of topsoil (0 − 20 cm) values of organic carbon content (in g kg− 1) from 
the land use and cover area frame statistical survey (LUCAS, Orgiazzi 
et al., 2018) dataset. We collected a set of 29 environmental covariates 
covering France and representing six factors influencing SOC spatial 
distribution: topography, vegetation (including remote sensing imag-
ery), long-term average climatic conditions, climate seasonality, 
extreme climatic conditions and soil. The list of covariates, their 
description and source is provided in the Supplementary Materials. All 
covariates were resampled using bilinear interpolation or aggregated to 
conform with a spatial resolution with grid cells of 250 m × 250 m. The 
SOC data and their matching values of environmental covariates were 
then used to calibrate two mapping models. 

The first model used was random forest (RF, Breiman, 2001) which 
we calibrated using 250 trees and a mtry parameter fixed at the rounded 
down square root of the number of covariates. The mtry parameter is the 
size of the random partition from the set of covariates during the split-
ting of a tree. All other parameters where held to their default value. We 

used the R programming language (R Core Team, 2020) for the imple-
mentation and the R package ranger (Wright and Ziegler, 2017). The 
second model used was a multiple linear regression (MLR, Hastie et al., 
2009) fitted using ordinary least squares and the default implementation 
from the R package stats. Note that there is no fundamental objection to 
use interpretation methods on a MLR model, although this model 
structure is simple and can readily be interpreted. This allows us to 
compare the linear regression model with the random forest model and 
reveal the functioning of the interpretation methods. Both RF and MLR 
models were validated using random 10-fold cross-validation. The 
model predictions did not have a systematic over- or under-prediction 
(mean error close to zero) and had a RMSE value of 21.19 and 21.65 
g kg− 1 for random forest and linear regression, respectively. Finally, we 
used all the SOC data for model calibration and prediction. The resulting 
SOC maps are shown in Fig. 6. 

We apply the local and global interpretation methods described in 
Section 2. We interpret the RF model and compare it with the MLR 
model when relevant. The global methods are applied on the models 
whereas the local methods are applied to a geographical area and to two 
contrasting spatial locations (Fig. 7). This allows us to understand how 
the importance of environmental covariates varies in space and from one 
location to another. The geographic region of study is called Maine-et- 
Loire, located in Western France in the Loire basin, and characterized by 
large variety of arable soils with overall relatively low carbon content. 
We interpreted the model for a region by dividing a geographical area 
into a fine grid and by treating each predicted pixel as an individual 
“observation”. The two spatial locations are denoted Beauce and Landes 
and can be refereed to as individual pedons with the same support than 
the observations from LUCAS. Location Beauce is in a cropland- 

Fig. 5. Average of the absolute Shapley values in the calibration dataset (a), dependence plot of SOC against woody biomass (b), and local interpretation of a single 
spatial location (c). Data and model from Wadoux et al. (2022), Section 4.2. 
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Fig. 6. Spatial distribution of SOC (in g kg− 1) for Metropolitan France excluding Corsica. The SOC maps were made using random forest (left) and multiple linear 
regression (right). 
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dominated region with fertile clay and/or silt-loam soils and relatively 
low carbon content due intensive agriculture whereas Landes is in a 
coniferous forested area with sandy soils (i.e. Podsols), but with 

relatively high topsoil carbon content due to little interest in these soils 
for agricultural purposes (Meersmans et al., 2012). Implementation of 
the interpretation methods was made with the R packages iml (Molnar 
et al., 2018) and fastshap (Greenwell, 2020). 

3.1. Global interpretation 

3.1.1. Which are the drivers of SOC spatial variation? 
Fig. 8a shows the covariate importance of the RF model (ratio of 

RMSE) obtained by 100 permutations. Nearly all covariates are impor-
tant for the RF model. The figure indicates that three MODIS satelite 
imagery covariates (i.e. MODIS red, green and SWIR 2) are the most 
important. Removing them would decrease the RMSE by a factor of 1.33, 
1.36 and 1.41 for the MODIS SWIR 2, green and red images, respec-
tively. Elevation and net primary productivity are important covariates 
too. The covariate representing soil water content for 1500 kPa suction 
is, conversely, not essential to the RF model, because its importance 
value is close to a ratio of RMSE value of 1 (i.e. removing covariate soil 
water content for 1500 kPa does not affect model prediction accuracy). 
Fig. 8b-c shows the covariate importance for groups of covariates, for 
both RF (Fig. 8b) and and MLR (Fig. 8c). All groups of covariates are 
important in the RF model. Vegetation, soil and topographic covariates 
are the most important. An opposite pattern is found in the MLR model, 
where these group of covariates appear the least important. For the MLR 
model, the two groups of covariates representing extreme and average 
climate conditions are the most important. 

Fig. 9 shows an alternative interpretation of the RF covariate 
importance with Shapley values. Note that while Fig. 8 shows the 
change in model RMSE, Fig. 9 shows the magnitude of individual co-
variate contributions to the prediction of the SOC data used for cali-
bration. Fig. 9a indicates that the most important covariates are MODIS 
images and elevation. The overall ranking of covariate importance 

Fig. 7. Location of the two spatial locations and the geographical area for the 
implementation of the local interpretation methods. The two black dots 
represent two spatial locations with contrasting SOC content. They are called 
Beauce and Landes. The dark grey area is called Maine-et-Loire and represents an 
administrative unit. 

Fig. 8. Mean and 90% confidence interval of the permutation-based covariate importance for a) all covariates of the random forest model, b) group of covariates for 
the random forest model and c) group of covariates in the multiple linear regression model. Covariate importance is assessed by the ratio of RMSE over 100 per-
mutations. We refer to the Supplementary Material for information on the group of covariates. 
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obtained by Shapley values is similar to that found with the 
permutation-based method. Fig. 9b shows the covariate contribution to 
each individual location found in the calibration dataset. The most 
important covariates (e.g. MODIS red) have a large range of Shapley 
values (i.e. between − 10 and 25 g kg− 1), meaning that this covariate can 
have a relatively important contribution to the model prediction. Fig. 9b 
also provides insight into the relationship between the relative covariate 
contribution to the prediction and the value of this covariate. For 
example, valley bottom flatness has, on average, a moderate impact in 
model prediction (Fig. 9a), but this is more subtle than that (Fig. 9b). For 
large values of valley bottom flatness, the covariate has a positive 
relationship with the SOC (i.e. it increases the SOC content), while it is 
the opposite for small values of valley bottom flatness. 

3.1.2. What is the functional form of the association between 
environmental covariates and SOC? 

Fig. 10 shows the effect of elevation on SOC, estimated with three 
difference methods (i.e. PDP in Section 2.3, ALE in Section 2.4 and 
Shapley values in Section 2.7). In each of the cases, SOC sharply de-
creases with elevation and then steadily increases for values of elevation 
larger than 250 m. With elevation values larger than 900 m, SOC levels 
off in the PDP, continues to increase in the ALE plot and decreases in the 
plot with shapley values. Note the different interpretation between the 
plots of Fig. 10. Fig. 10a (PDP) shows how the predicted SOC values 
change with elevation whereas Fig. 10b (ALE) shows the effect of 
elevation on SOC compared to the average prediction of SOC (i.e. 
centered at zero). Finally, Fig. 10c shows the relative contribution of 
elevation to the individual SOC observations of the calibration dataset 
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Fig. 9. Covariate importance estimated with Shapley values for the RF model. Plot a) shows the average covariate contribution to the prediction in the calibration 
dataset, that is, the averaged absolute values of plot b). Plot b) shows the individual Shapley values for each location of the calibration dataset, i.e. the contribution of 
the covariate to the prediction at this location. The colour in b) represents the covariate value normalized in the range (0 − 1). 

Fig. 10. Effect of elevation of SOC estimated with a) partial dependence, b) accumulated local effect and c) Shapley values. The x-axis shows the marginal dis-
tribution of elevation in the calibration dataset. In c) the black dots represent the individual Shapley values and the black curve is a smoothed line obtained over the 
Shapley values with a conditional mean function. Note that these results were obtained with the RF model. 
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(the black dots). 
The two-dimensional relationship of SOC with elevation and pre-

cipitation seems more complex (Fig. 11) than the one-dimensional fig-
ures in Fig. 10. Fig. 11a shows that SOC content generally increases with 
higher elevation and more precipitation. However, the ALE plot in 
Fig. 11b has a different pattern: for elevation lower than 250 m, the SOC 
content increases with precipitation, while an opposite pattern is seen 
for elevation values larger than 250. In Fig. 11, both plots have a 
noticeable increasing pattern of SOC with higher precipitation, but only 
for low elevation. Above an elevation of 1000 m, few SOC observations 
exist, which means that interpretations of effects for this elevation 
should be cautious. 

3.1.3. How does SOC prediction depend on interactions among covariates? 
Fig. 12 shows the strength of the interaction between environmental 

covariates for the RF model. Note that the MLR is not expected to 
contain an interaction effect between covariates unless explicitly spec-
ified. Fig. 12a shows the presence of a strong overall interaction effect in 
the random forest model. Satellite imageries MODIS red, green and 
SWIR 2 are involved in interactions with other covariates. Elevation also 
substantially interacts with other covariates. Covariates standard devi-
ation of monthly solar radiation and soil water content, conversely, have 
negligible interaction. Fig. 12b identifies how strong covariates interacts 
with elevation. Elevation is dominantly interacting with MODIS SWIR 2, 
precipitation seasonality and topographic covariates (e.g. wetness 
index). There is no strong interaction of elevation with soil water con-
tent, solar radiation and diversity of vegetation. 

3.1.4. How to summarize the model? 
Fig. 13 shows a surrogate model of the RF model. The surrogate 

model is a simple decision tree with a depth of three. It has a MEC of 0.3. 
The final nodes show the average predicted value and the percentage of 
data in the node. The colour of the final node is proportional to the value 

in the node. The colours associated to the rules are reported in the map 
of France. Fig. 13 shows that MODIS red band, elevation and climate 
seasonality covariates were selected by the surrogate model. Accord-
ingly, the smallest predicted values of SOC (i.e. SOC <= 24 g kg− 1) are 
found for locations with large values of the MODIS red band and low 
elevation (< 312 m). Large values of predicted SOC, conversely, are 
found for locations with relatively low values of MODIS red, when 
temperature of the warmest quarter are moderate (< 18 degrees) and 
precipitation of the driest month are relatively abundant (> 67 mm). 
The pattern of the decision rules shown in the right-hand side of Fig. 13 
shows regions where the RF model is likely to predict similar values of 
SOC. The map pattern shows that large SOC content is predicted in 
mountainous regions, and in a relatively large amount in Brittany and 
Normandy. Cropland and vineyard have low predicted carbon, whereas 
forested areas such as in the Landes have a high carbon content. 

3.2. Local interpretation 

3.2.1. What is the local functional form of the association between 
environmental covariates and SOC? 

Fig. 14 shows the local association between SOC and elevation in the 
Maine-et-Loire area. The association is estimated for the RF model with 
ICE curves and their average value (i.e their PDP), centered at the 
average value of elevation in the area (68 m). Each ICE curve is a 
location in the area. In Maine-et-Loire, SOC decreases with higher 
elevation, but this effect is relatively minor, as shown by the PDP curve 
that is nearly always close to zero. The ICE curves show a different as-
sociation for individual locations. While most of the ICE curves are close 
to the PDP, for some locations the SOC content is relatively high (i.e. > 8 
g kg− 1 at 0 m) for low elevation and sharply decreases with higher 
elevation. Overall, there is more variability in the individual ICE curves 
for low elevation than for high elevation, which suggests that SOC 
content is higher and more variable with low elevation than it is with 
high elevation in Maine-et-Loire. The pattern of ICE curves observed in 
this area is thus similar from that observed on average for France for the 
elevation range 0–200 m, where elevation has a positive relationship 
with SOC content (see also Fig. 10a-b). 

Fig. 15 shows the ICE curves of SOC with elevation and MODIS SWIR 
2 band, for the MLR and RF models, and the two locations of interest, 
Beauce and Landes (Fig. 7). Fig. 15 shows that the two models predicted 
different values of SOC for Landes, but predicted similar values for 
Beauce. The predicted SOC of Beauce is also lower than that of Landes. 
The association between the SOC content and the two covariates (i.e. 
elevation and SWIR 2) is different between models. The linear model has 
ICE curves that increase and decrease linearly with elevation and MODIS 
SWIR 2, repectively. For random forest, the ICE curves have more 
variation and are not linear: in both locations SOC content slightly in-
creases with elevation up to about 1000 m, after which SOC content 
levels off. At location Landes, a sharp decrease of SOC content is 
observed for increasing elevation in the first 20 m. Covariate MODIS 
SWIR 2 has negative relationship with SOC for the location in Landes up 
to values of about 1100, after which the SOC values are stable around 25 
g kg− 1. For the location in Beauce SOC slightly decreases between 1000 
and 1500, then remains constant. 

3.2.2. How do environmental covariates contribute to the local prediction? 
The spatial pattern of the Shapley values for the multiple linear 

regression and random forest models and five covariates is shown in 
Fig. 16. The figure shows clear differences in the contribution of cova-
riates to the predictions and clear spatial patterns. The MODIS red band 
has large positive or negative Shapley values. This is also the case for 
elevation and precipitation. All covariates have a detailed spatial pattern 
of change in Shapley values with increasing distance from the Loire 
river. Substantial differences are also observed between the multiple 
linear regression and random forest models. The contribution of the 
MODIS red band to the SOC prediction made by the random forest model 
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Fig. 11. Two-dimensional partial dependence plot of the effect of elevation and 
precipitation on SOC content (a), and accumulated local effect of elevation and 
precipitation on SOC content (b). Note that these results were obtained with the 
RF model. 
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is very different from that made by the multiple linear regression model. 
Also the pattern of Shapley values for precipitation and elevation is 
different between models. The linear regression model has a gradient of 
increasing Shapley values from North to South for the covariate pre-
cipitation. In the large floodplain of the river, elevation, topographic 
wetness index and slope have a negative contribution to the SOC pre-
diction while it is the opposite for the linear model. 

Fig. 17 shows the covariates contribution to the SOC prediction made 

by RF at two spatial locations, in Beauce and Landes. The Shapley values 
of Fig. 17 show the positive or negative contribution to the prediction, in 
the unit of the SOC, using the average prediction from the calibration 
dataset as baseline. Slight differences between the sum of Shapley values 
and the predictions are due to the approximation strategy. Fig. 17 shows 
that SOC prediction in the two spatial locations are made in a very 
different way. The location in Beauce has low SOC content, and so 
contribution of covariates is mostly negative. MODIS red, green, SWIR 2, 

Fig. 12. Estimate of the overall interaction (i.e. the H-values calculated with Eq. 8) between the environmental covariates used in the random forest model (a) and 
estimate of the two-way interaction (Eq. 7) with elevation (b) for the RF model. 
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net primary productivity and elevation had a large negative contribu-
tion, whereas a small positive contribution to the SOC prediction is made 
by the soil thickness. In the location in Landes, the SOC content is also 
lower than the average. Large positive contributions to the SOC pre-
dictions are made by the MODIS green and red bands, and by the net 
primary productivity. The temperature of the warmest quarter and 
standard deviation of the solar radiation show negative contributions to 
the SOC prediction. 

4. Discussion 

The methods tested for the interpretation of two mapping models 
provided valuable information on the drivers of SOC variation in France, 
their interaction, as well as on the functional form of the association 
between environmental covariates and SOC. This information was ob-
tained either for a single spatial location or globally from the model as a 
whole. In our case study, for example, MODIS remote sensing images 
were on average the most important variables contributing to SOC 
prediction. The overall importance of MODIS images to predict SOC 
does not come as a surprise, because spectral characteristics of MODIS 
images correlate to biogeochemical properties relevant to explain the 
spatial distribution of SOC. MODIS red band strongly correlates with soil 

Fig. 14. Centered effect of elevation on the SOC in the region Maine-et-Loire 
and for the RF model. The effect is centered at the average elevation value of 
the area (x0 = 68). The black curves are the individual conditional expectation 
whereas the yellow curve is their average (i.e. their partial depen-
dence function). 

Fig. 15. Individual expectation curves of the effect of elevation and MODIS SWIR 2 on SOC for the two locations of interest Beauce and Landes and the multiple linear 
regression and random forest models. The dots represent the SOC prediction made by the model at the locations. 
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the SOC prediction while light colour indicates a negative contribution. 
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organic matter (Dou et al., 2019). Vågen et al. (2016) used MODIS 
reflectance data only to predict SOC, pH, sand content, sum of 
exchangeable bases, as well as root-depth restrictions with high accu-
racy in Africa. Further, our results suggested that locally, elevation, 
precipitation, or valley bottom flatness could outweigh MODIS images. 
Admittedly, the functional form of the association between environ-
mental covariates and SOC varies from one location to another. In a 
clayey agricultural soil, SOC was not only lower in content than in a 
sandy soil covered by a coniferous forest, but the environmental cova-
riates contributed differently to the predictions. While these results 
should be interpreted with care, the average predicted value of SOC and 
the main covariates contributing to the prediction for these two loca-
tions appear realistic compared to existing studies (see for instance 
Meersmans et al., 2012). 

The utility of the methods used in this paper, along with their are 
pros and cons are summarized in Table 1. We stress that in spite of 
apparent similarities between the methods (as illustrated, for example, 
in Fig. 10), the results actually differ in which aspects of the relationship 
between SOC and covariates they describe. Also, the representation of 

the covariate importance obtained by permutation (Fig. 1) and Shapley 
values (Fig. 9) is seemingly similar, but covariate ranking in the two 
methods is made differently. Because of these similarities ample atten-
tion should be paid to the conclusions that can effectively be drawn with 
the interpretation methods. There is a risk that practitioners misinter-
pret the output of these methods. Apart from an understanding of which 
conclusions can potentially be drawn, a number of assumptions underlie 
the methods, the most important of which is that of independence be-
tween covariates. Permutation-based methods (e.g. covariate impor-
tance with permutation, PDP, Shapley values) might lead unrealistic 
results when covariates are dependent, because perturbation can pro-
duce data points that lead outside the multivariate covariate space. An 
illustration of this problem along with a simulated example is provided 
in Molnar et al. (2022), Section 5. It does not mean that permutation- 
based methods cannot be used when covariates are dependent, as is 
almost always the case in DSM studies, but that one must take care when 
interpreting the output of these methods. 

Alternatively, methods that better account for dependence between 
covariates exist, such as when using the ALE instead of the PDP 

Fig. 17. Contribution of the individual covariates to the prediction made by the RF model of SOC at locations Beauce (a) and Landes (b). Contributions are estimated 
with Shapley values. The red colour indicates a negative contribution while a blue colour indicates a positive contribution. The y-axis indicates the value of the 
covariate at the prediction location. 

Table 1 
Summary table of the model-independent methods for global and local interpretation of mapping models.  

Method Level Utility Pros Cons Reference 

Covariate 
importance with 

permutation 

Global Quantifies the importance of 
a covariate or group of 

covariates on model 
accuracy. 

Intuitive interpretation. Takes into 
account interaction among 
covariates. Fast to compute. 

Misleading when covariates are dependent. Fisher et al. (2019) 

Partial dependence 
plot 

Global Shows the association 
between covariates and soil 

property 

Intuitive interpretation. Fast to 
estimate for small n. 

One or two covariates can realistically be 
displayed in a single plot. Misleading when 

covariates are dependent. 

Friedman (2001) 

Accumulated local 
effect 

Global Shows the association 
between covariate and soil 

property. 

Suited for dependent covariates. 
Fast to compute. 

One or two covariates can realistically be 
displayed in a single plot. Cannot be 

estimated for a single location. Not available 
for categorical covariates. 

Apley and Zhu (2020) 

H-statistic Global Identifies the strength of the 
interaction between 

covariates. 

Dimensionless. Has an underlying 
theory. 

Slow to compute. Misleading when 
covariates are dependent. 

Friedman and Popescu 
(2008) 

Surrogate 
modelling 

Global Gives a summary of the 
model. 

Intuitive interpretation. Flexibility 
in the choice of surrogate model. 

Comes with the disadvantages of the 
surrogate model. Often difficult to 
approximate the black box model. 

Molnar (2020) 

Individual 
conditional 
expectation 

Local Shows the association 
between covariate and soil 

property at a single location. 

Intuitive interpretation. Fast to 
estimate. 

A single covariate can realistically be 
displayed in a plot. Misleading when 

covariates are dependent. 

Goldstein et al. (2015) 

Shapley values Local/ 
global 

Quantifies the relative 
contribution of a covariate 

to a prediction 

Has an underlying theory. 
Intuitive interpretation. Additive, 

and can be used for global 
interpretation. 

Slow to compute. Misleading when 
covariates are dependent. 

Shapley (1953), ̌Strumbelj 
and Kononenko (2014),  
Lundberg and Lee (2017)  
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(Table 1), or by using variants that rely on the conditional distribution 
(e.g. conditional feature importance). Note, however, that in each of the 
cases using a different method or a method that relies on the conditional 
distribution, might give results that are non-intuitive and more difficult 
to interpret. 

As mentioned in the Introduction the aim of this paper was to show 
how insights can be obtained from complex empirical soil models, but 
interpretation of such models to explain the origin or causal mechanisms 
of the spatial distribution of soil properties should be made with care. 
Soil scientists are usually interested in obtaining insights into the data 
generation process by interpretation of the empirical relationships found 
by the model. While that is a worthy objective, empirical models do not 
aim to provide a diagnosis of causalities in the spatial pattern of soil 
properties, nor do they account for mechanisms derived from our 
knowledge of major soil processes. In our study, the strong dependence 
on MODIS satellite (spectral) imagery to produce the maps takes out of 
the realm direct assessment of causalities between soil forming factors 
and SOC, because satellite data are not intended to represent any 
pedological mechanism involved in the spatial distribution of SOC, 
although energy from MODIS images interact with photosynthetic 
vegetation and provide a proxy for vegetation and may also capture 
differences in geology/parent material in drylands. Any interpretation 
on mechanisms involved in SOC distribution should however made with 
care. Several recent studies have argued in this sense (e.g. Fourcade 
et al., 2018). Wadoux et al. (2020), for example, demonstrated that a 
complex empirical model is able predict accurately SOC, even when the 
covariates used to fit the model were meaningless and unrelated to 
known soil forming factors. They concluded that the pattern found by 
these complex models are not a reliable way to obtain new pedological 
knowledge. We recommend to use the interpretation methods described 
in this paper to obtain insights into the pattern found by the model, and 
then to translate the pattern into the formulation of hypotheses through 
connection of patterns to possible soil processes. 

Another option, especially applicable when producing quantitative 
soil information (i.e. prediction) is the main objective, is to use inter-
pretation methods to perform a diagnostic on the model. In many soil 
mapping studies issues of hypothesis generation are not present, so an 
assessment of potential causalities is not a priority. Often however, the 
modelling process is made of refining, possibly including manual se-
lection of covariates and visual examination of some portions of the 
map. The overall model validation statistics might be acceptable, but the 
predicted pattern in some areas might not conform with expectations. 
Take, for instance, a model that predicts abnormally high SOC content in 
a sandy soil. Should we collect more data in this area or incorporate 
more relevant covariates? Model diagnostics further motivates the 
application of the methods described in this paper. 

This study explored a complementary set of methods for the local and 
global interpretation of complex soil models. Within the framework of 
model-independent techniques we might also explore recent de-
velopments such as breakdown plots (Robnik-Šikonja and Kononenko, 
2008) for additive and non-additive attribution, functional decomposi-
tion (Molnar et al., 2020), or local interpretable model-agnostic expla-
nations LIME, Ribeiro et al., 2016). LIME is a popular local 
interpretation method potentially suited when the number of covariates 
(explanatory variable) is very large. However, this method also has 
disadvantages such as instability in the results and sensitivity to the local 
neighborhood size. Also here Shapley values might provide a compu-
tationally tractable alternative method for the interpretation of complex 
soil models. Thus, we did not present LIME in this study but we 
acknowledge that this might be a valuable approach too. 

The alternative to model-independent methods is the use of predic-
tion models that are not “black boxes” or interpretation methods that are 
specific to a model. In many instances sufficient insights into soil pro-
cesses can be obtained through the rule sets generated by methods that 
rely on a statistical model. Geostatistical models of soil variation, for 
example, through the analysis of the variogram and kriging, can be 

interpreted in terms of the estimated variogram parameters and plau-
sibility of the assumptions, which all give insights into the nature of soil 
variation. Notably, geostatistical models are powerful for prediction and 
provisions to address complex non-stationary soil variation exist (e.g. 
through wavelet transform). 

Finally, in the Introduction we presented a set of interpretation 
methods that are specific to a model. These methods are valid and useful 
for the interpretation of complex models. We refer to Biecek and Bur-
zykowski (2021), Section 1.5 for an overview and to Molnar (2020), 
Section 10 for a summary of model-specific methods for interpreting 
artificial neural networks. Further investigations are needed to under-
stand how these methods can be used for the interpretation of digital soil 
models. 

5. Conclusion 

We have presented methods to obtain insights into complex models 
of soil variation. These methods were reviewed and evaluated in a case 
study for mapping topsoil organic carbon in France using a large set of 
environmental covariates as predictors and two models. From the results 
and discussion we draw the following conclusions:  

• The methods presented in this paper allows one to extract and 
visualize different aspects of a complex model.  

• In a case study, we reveal i) the importance of each driver of soil 
variation, ii) their interaction and iii) the functional form of the as-
sociation between environmental covariates and the soil property.  

• Interpretation could also be performed locally, for an area or a 
spatial location of interest.  

• The use of Shapley values for interpreting complex models of soil 
variation is a promising future line of research because it is versatile, 
enables both local and global interpretation, is easy to interpret and 
has an underlying theory.  

• Different methods might produce seemingly similar results. Ample 
attention should be paid to the conclusions that can effectively be 
drawn with the interpretation methods.  

• A number of assumptions underlie the use of the interpretation 
methods, the most common of which is that of independence be-
tween covariates. Deviation from this assumption does not preclude 
the use of the methods, but results should be interpreted with care. 

• We presented a summary table as a guide for selecting the inter-
pretation method, given the purpose of the study and the pros and 
cons of the method. 

We stress the importance of going beyond prediction in the use of 
complex statistical or non-statistical models. Interpretation of models 
reveal how the predictions are made and can help formulate hypotheses 
about the underlying soil processes and mechanisms driving soil varia-
tion. Interpretation methods are also valuable when the production of 
quantitative soil information (i.e. prediction) is the main interest, to 
assist model refining and the evaluation of model prediction plausibility. 
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