
Geoderma 405 (2022) 115332

Available online 20 September 2021
0016-7061/© 2021 Elsevier B.V. All rights reserved.

An integrated approach for the evaluation of quantitative soil maps through 
Taylor and solar diagrams 

Alexandre M.J-C. Wadoux a,*, Dennis J.J. Walvoort b, Dick J. Brus c 

a Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, Australia 
b Soil, Water and Landuse group, Wageningen Environmental Research, The Netherlands 
c Biometris, Wageningen University & Research, The Netherlands   

A R T I C L E  I N F O   

Handling Editor: Kristin Piikki  

Keywords: 
Soil science 
Pedometrics 
Goodness-of-fit 
Error 
Digital soil mapping 
Accuracy 

A B S T R A C T   

For many decades, soil scientists have produced spatial estimates of soil properties using statistical and non- 
statistical mapping models. Commonly in soil mapping studies the map quality is assessed through pairwise 
comparison of observed and predicted values of a soil property, from which statistical indices summarizing the 
quality of the entire map are computed. Often these indices are based on average error and correlation statistics. 
In this study, we recommend a more appropriate and effective method of map evaluation by means of Taylor and 
solar diagrams. Taylor and solar diagrams are summary diagrams exploiting the relationship between statistical 
indices to visualize differentiable aspects of map quality into a single plot. An important advantage over current 
map quality evaluation is that map quality can be assessed from the combined effect of a few statistical quan-
tities, not just on the basis of a single index or list of indices. We illustrate the use of common statistical indices 
and their combination into summary diagrams with a simulation study and two applications on soil data. In the 
simulation study nine maps with known statistical properties are produced and evaluated with tables and 
summary diagrams. In the first case study with soil data, change in the quality of a large-scale topsoil organic 
carbon map is tracked for a number of permutations in the mapping model parameters, whereas in the second 
case study several maps of topsoil organic carbon content for the same area, made by various statistical and non- 
statistical models, are compared and evaluated. We consider that in all cases better insights in map quality are 
obtained with summary diagrams, instead of using a single index or an extensive list of indices. This underpins 
the importance of using integrated summary graphics to communicate on quantitative map quality so as to avoid 
excessive trust that a single map quality index may suggest.   

1. Introduction 

A primary objective in digital soil mapping (DSM) is the production 
of soil maps by exploiting the quantitative (statistical) relationships 
between laboratory measured soil data and a set of environmental 
covariates. Recent examples of soil mapping studies depicting quanti-
tative (continuous) soil properties are Nussbaum et al. (2018); Ramirez- 
Lopez et al. (2019) or Heuvelink et al. (2021). Soil maps are imperfect, 
so that there is always a deviation between the map with predicted 
values and the true spatial pattern of a soil property. The smaller this 
deviation, the higher the map quality. 

Determining soil map quality has been an area of research for many 
years. Early studies include Webster and Beckett (1968), Burrough et al. 
(1971) and Marsman and Gruijter (1986). These studies aimed at 

assessing the quality of conventional (discrete or thematic) soil maps 
with accuracy statistics. Finke (2006) and Bishop et al. (2001) evaluated 
soil maps with quality indices of the user’s versus producer’s perspective 
or information theory, respectively. Lark (2000) proposed a quality 
index for evaluating the kriging variance that combines the prediction 
error and the prediction error variance, more specifically to compute the 
sample average of the squared prediction error divided by the associated 
kriging variance. Also Malone et al. (2011) proposed to evaluate a soil 
map on the basis of both the predictions and their uncertainties. Piikki 
et al. (2021) provided a list of existing statistical indices to be used for 
the evaluation of quantitative soil maps. Brus et al. (2011) stressed that 
it is important to define map quality indices at the level of the entire 
map, as population means, not just as sample averages, and advocate 
estimation of the map quality indices through probability sampling. 

* Corresponding author at: Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia 
E-mail address: alexandre.wadoux@sydney.edu.au (A.M.J-C. Wadoux).  

Contents lists available at ScienceDirect 

Geoderma 

journal homepage: www.elsevier.com/locate/geoderma 

https://doi.org/10.1016/j.geoderma.2021.115332 
Received 4 May 2021; Received in revised form 28 June 2021; Accepted 29 June 2021   

mailto:alexandre.wadoux@sydney.edu.au
www.sciencedirect.com/science/journal/00167061
https://www.elsevier.com/locate/geoderma
https://doi.org/10.1016/j.geoderma.2021.115332
https://doi.org/10.1016/j.geoderma.2021.115332
https://doi.org/10.1016/j.geoderma.2021.115332
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geoderma.2021.115332&domain=pdf


Geoderma 405 (2022) 115332

2

In DSM studies, map quality is usually assessed by global statistical 
indices of the error computed by pairwise comparison of soil map pre-
diction and observations. These indices are global in the sense that they 
summarize the quality of the entire map into a single statistical index, i. 
e. they quantify the overall accuracy of all locations in the mapping area 
taken together. Often these map quality indices are based on correlation 
statistics (e.g. the Pearson’s correlation coefficient or concordance cor-
relation coefficient) or average error indices (e.g. the mean error or 
(root) mean square error). While valid and useful for the assessment of 
specific aspects of map quality, a number of tools developed outside soil 
science are available to allow one to evaluate simultaneously multiple 
statistical indices with summary diagrams. The aim of this paper is to 
introduce these tools, which provide a more integrated approach to the 
evaluation of quantitative soil maps, to the soil science community. 

This paper is structured as follows. First, we evaluate a set of com-
mon statistical indices for estimating continuous soil map quality. Each 
index shows a specific aspect of map quality. Second, we suggest that 
multiple aspects of map quality can be evaluated simultaneously, by 
visualization of the Taylor and the solar diagram. The statistical 
description of the indices and the diagrams are illustrated with a 
simulation study. Finally, the use of map quality indices and their 
interpretation with the Taylor and solar diagrams are illustrated with 
two case studies on evaluation of a digital soil map of organic carbon in 
the Eastern Amazon rainforest. 

2. Evaluation of soil maps 

Consider the prediction error as the resultant of the observed minus 
predicted values of a soil property at the ith spatial location, that is ε(si)

= z(si) − ẑ(si), in which z and ẑ denote the observed and predicted soil 
variable at location si(i = 1,…,N; si ∈ A ), respectively, and N is the total 
number of population units in the study area A . We consider the vectors 
z and ̂z of equal lengths N with means z and ̂z and standard deviations σz 
and σ ẑ. Further, we assume that z does not contain measurement error. 
In practice, ε is estimated from a probability sample of size n << N, or 
through cross-validation if collecting such a sample is not feasible. 

2.1. Average error indices 

Commonly reported average error indices are the mean prediction 
error (ME), mean absolute prediction error (MAE) and root mean 
squared prediction error (RMSE). They are easily interpretable because 
they are in the unit of the soil property, and defined as: 

ME =
1
N

∑N

i=1
ε(si), (1)  

MAE =
1
N

∑N

i=1
|ε(si)|, (2)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
ε(si)

2

√
√
√
√ . (3) 

The ME can be positive or negative, while the MAE, RMSE and its 
square (MSE = RMSE2) are nonnegative statistics with no upper-bound 
and an optimal value of 0. The ME (also called bias) is an indicator of 
whether the predicted values are systematically under- or overpredicted. 
The ME shows the central tendency (average error) but does not discern 
the magnitude of the error because of cancellation between positive and 
negative error. This cancellation is prevented in the MAE and RMSE by 
taking the absolute value of the error or by squaring the error before 
taking the average, respectively. The square term in Eq. (3) causes large 
errors to have a relatively greater importance than small errors on the 
total square error. From Eqs. (1)–(3) it follows that ME ⩽ MAE ⩽ RMSE. 

Legates and McCabe (1999) have noted that the degree to which 

RMSE ⩾ MAE is an indicator that the variance of the error is dispro-
portionately altered by large individual errors. Several authors (e.g. 
Armstrong, 2001; Willmott and Matsuura, 2005) have thus warned 
against the use of the RMSE for the evaluation of the quality of a pre-
diction when the distribution of the error is not symmetric. 

2.2. Coefficient of determination 

The coefficient of determination (r2 or R2) is the square of the 
Pearson’s product-moment correlation coefficient (r), given by: 

r =

∑N
i=1
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(
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)
− z

)(
ẑ
(
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)
− ẑ

)
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The r2 can be interpreted as the squared covariance between pre-
dicted and observed values (i.e. how much the two variables change 
together), normalized by the product of the two variances. Therefore it 
describes the linear correlation between the observed and predicted 
values and ranges from 0 to 1, with higher values indicating better 
correlation. The obvious limitation of the r2 for evaluation of mapping 
accuracy is that the index is insensitive to additive or proportional dif-
ferences between the observed and predicted values (Willmott, 1984). In 
other words, the r2 quantifies the dispersion around the linear regression 
line between predicted and observed values ẑ = β0 + β1z, but not the 
dispersion from the line of equality z = ẑ, so that for any nonzero value 
of β1 and any value of β0, the squared correlation coefficient can be 1 
(Legates and McCabe, 1999). A high value of r2 can be obtained even in 
case of strongly biased predictions, yielding a misleading picture of the 
map quality. Further, it can be shown that the lower limit of the r2 is 
found when ẑ(si) = z, i.e. when the mean of the observations is used as 
predictor (β1 = 0 and β0 = z). In such case, there is no correlation be-
tween the predictions and observations and r2 = 0. 

2.3. Modelling efficiency coefficient 

The modelling efficiency coefficient (MEC, Janssen and Heuberger 
(1995)) is widely used in DSM studies. As for the r2 its optimal value is 1 
but it can be negative if the root mean square error exceeds the standard 
deviation of the observations. It is computed as follows: 

MEC = 1 −
∑N

i=1(z(si) − ẑ(si))
2

∑N
i=1(z(si) − z)2 , (5)  

which is equivalent to the ratio of the MSE to the variance of the 
observation, subtracted from unity (i.e. MEC = 1 − MSE/σ2

z ). In hy-
drology, the MEC is known as the Nash–Sutcliffe model efficiency co-
efficient (Nash and Sutcliffe, 1970). The MEC quantifies the 
improvement made by the model over using the mean of the observa-
tions as prediction. A value of 1 (MEC = 1) indicates a perfect match 
between the observed and predicted values of the soil property, whereas 
a value of 0 (MEC = 0) indicates that the mean of the observed values (z) 
is as good predictor as the model. A negative value (MEC < 0) occurs 
when the mean of the observed values used as prediction is a better 
predictor than the model, i.e. when the residual variance (the numerator 
in Eq. (5)) is larger than the variance of the observations (the denomi-
nator in Eq. 5). Unlike the r2, the MEC is sensitive to additive and 
proportional differences between observed and predicted values, that is, 
it considers the dispersion from the line of equality. If ̂z = β0 +β1z where 
β0 = 0 and β1 = 1, the MEC will decrease for change of β0 and β1 from 
0 and 1, respectively. 

Note the sensitivity of the r2, MEC (as well as the MSE, or RMSE) to 
large error values. When the error distribution is strongly skewed to-
wards large values, squaring the error severely inflates the map quality 
statistics which does not reflect the actual relationship between 
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measured and predicted values of the soil property. In such case, more 
robust statistics are the MAE, the (root) median square error, or adjusted 
statistics such as the modified MEC index proposed in Legates and 
McCabe (1999). The latter is computed by replacing the numerator in 
Eq. (5) (i.e. the MSE) by the MAE (Eq. (2)) and the denominator by the 
mean of absolute deviation (i.e. the mean of the absolute values of the 
distances from z(si) to z). 

3. Compact visualization of map quality 

3.1. The Taylor diagram 

Taylor diagrams (Taylor, 2001) quantify how closely the predicted 
values match the observed values in terms of correlation (r), standard 
deviation of the error (SDE) and standard deviation of observed (σz) and 
predicted (σ ẑ) values. The statistics are related one to another by: 

SDE2 = σ2
z + σ2

ẑ − 2σzσẑr, (6)  

which have a geometrical relationship in the triangle through the law of 
cosines: 

a2 = b2 + c2 − 2bc cos α, (7)  

where a, b and c are the length of the triangle sides and α is the angle 
between sides b and c. A representation of this geometric relationship is 
shown in Fig. 1. 

Eq. (6) above is the basis of the Taylor diagram as it enables to 
compare the individual contributions of the correlation and standard 
deviations to the SDE, i.e. to the standard deviation of the error ε, given 
by: 

SDE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(ε(si) − ε )2

√
√
√
√ . (8) 

The Taylor diagram is shown in Fig. 2. In a polar coordinate system, 
the radial distance from the origin is assigned to the standardized 
(indicated by asterisk *) standard deviation σ * = σẑ/σz and the angular 
position to the correlation coefficient between the map with predicted 
values and the map with the true values. The radial lines from the origin 
in Fig. 2 are determined by the inverse cosine of the correlation coeffi-
cient. A negative correlation of − 1 is thus plotted 180o away from a 
positive correlation value of 1. 

The reference point is the point in the diagram obtained when the 
predictions are perfect (all prediction errors are 0). In that case the 
standardized standard deviation of the predictions is 1, and the corre-
lation of the predictions with the true values is 1. This point is plotted 
along the abscissa at (1,0) and is shown in Fig. 2 in red. In the same 
figure the other point in black is called “test map” and represents the 
map quality indices of a test map to be evaluated. 

The distance between any point in the diagram and the reference 
point is proportional to the SDE. Standardizing the SDE of Eq. (6) (i.e. 
dividing by σ2

z ) and taking the square root yields: 

SDE* =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + σ*2 − 2σ*r

√
. (9) 

The relative merits of different models are quantified by the distance 
SDE* from the reference point, represented by the red dashed lines in 
Fig. 2. This is what makes the Taylor diagram useful: the position of a 
single point in this diagram, not only provides information about pre-
cision (semicircles around the reference point), but also about spatial (or 
temporal) patterns (r) and the degree of smoothing (semicircles around 
the origin). 

In Fig. 2 the correlation coefficient between the test map predictions 
and the observations (i.e. the reference point) is 0.76, σz = 1.17 and 
σ ẑ = 0.90 so that σ* = 1.30 (i.e. the degree of smoothing). Accordingly, 
the test map in Fig. 2 is at a distance SDE* = 0.84 from the reference 
point. 

3.2. The solar diagram 

An alternative to the Taylor diagram is the solar diagram derived 
from the relation (Eq. (10)) between the standard deviation of the error 
(SDE), mean error (ME) and RMSE. The squared SDE (in other words, the 
error variance) is the squared bias (ME2, Eq. (1)) subtracted from the 
squared RMSE (Eq. (3)), thus verifying the quadratic relationship: 

RMSE2 = ME2 + SDE2. (10) 

A geometric representation of this relationship is provided in Fig. 3. 
The x-axis indicates the ME. A negative values represents systematic 
overestimation whereas a positive value an underestimation. The y-axis 
indicates the standard deviation of the error. The distance between the 
origin and any point is equal to the RMSE. 

The solar diagram is based on Jolliff et al. (2009)’s target diagram. In 
the solar diagram only two quadrants are used, while Jolliff et al. (2009) 
used the remaining two quadrants to indicate whether the standard 
deviation of the observations is greater than the standard deviation of 
the predictions, by multiplying the SDE by sign(σ ẑ − σz). This way the 
target diagram also indicates whether the map is more smooth (positive 
SDE) or more rough (negative SDE) than the observations (in other 
words, whether the standard deviation of the predictions is larger or 
smaller than the standard deviation of the observations). However, maps 
with similar quality (in terms of bias, RMSE, and SDE) may appear as 
points far away from each other in the target diagram. It makes the 
target diagram more difficult to interpret and may lead to wrong 
interpretations. 

A solar diagram is shown in Fig. 4. In a Cartesian coordinate system, 
the x-axis represents the standardized ME and the y-axis the standard-
ized SDE. By standardizing all the quantities by the standard deviation of 

Fig. 1. Graphical representation of the relationship between the law of cosines and the map quality indices: the standard deviation of the error (SDE), variance of the 
prediction (σẑ) and of the observation (σz). 

A.M.J-C. Wadoux et al.                                                                                                                                                                                                                       



Geoderma 405 (2022) 115332

4

the observations, the distance in the diagram is expressed in standard-
ized units, not in the unit of the observations. The distance from the 
origin to any point in the diagram is then expressed in standardized 
RMSE (RMSE*): 

RMSE*2 = ME*2 + SDE*2, (11)  

where ME* = ME/σz and SDE* is given in Eq. (9). 
The resulting diagram provides multiple information on map quality: 

whether there is a positive or negative bias in the prediction (the ME on 
the x-axis), information on the standard deviation of the error, and on 
the relative performance of different maps, quantified by the RMSE and 
represented by the distance to the origin. 

The solar diagram takes its name from the coloured semicircles 
around the origin. Jolliff et al. (2009) showed the statistical relationship 
of the Pearson’s r coefficient with the standardized SDE (SDE*, Eq. (9)). 
Since the minimum value of SDE* occurs when σ* = r, ∀ r > 0, the 
minimum SDE* for a positive r value is expressed by min(SDE*) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + r2 − 2r2

√
, i.e. any point between min(SDE*) and the origin has a 

Pearson’s r correlation value greater than r. Fig. 4 shows shades of 
yellow corresponding to classes of min(SDE*) values for r > 0.95, r >
0.9, r > 0.7 and r > 0. For example, a point with r = 1, SDE* = 0 and 
ME* > 0 can be anywhere on the x-axis of the solar diagram because r is 
always greater than the lower bounds indicated by the yellow colours. 
More information on the relationship between r and SDE* is found in 
Jolliff et al. (2009, p.72). 

The outer circle with standardized RMSE value of 1 also provides a 
convenient marker on the overall map quality. Points with a value of 
RMSE* greater than 1 indicate that the prediction is worse than the 
mean of the observations taken as prediction. The marker RMSE* = 1 is 
also directly related to the MEC (Eq. (5)) by MEC = 1 − RMSE*2 and may 
be added to the solar diagram (the outermost black line in Fig. 4) as a 
reference of average map quality. 

Finally, more information may be added to the solar diagram by 
means of a colour scale on the points to represent any supplemental 
information, for example, the modelling efficiency coefficient (MEC, Eq. 
(5)). 

4. Simulation experiment and case studies 

4.1. Simulation experiment 

Methods On a grid of size 100 × 100 cells, we simulated a realisation 
of a map composed of a linear spatial trend superimposed on a Gaussian 
random field. The trend had an intercept of 5 and slope parameter of 0.1 
for the x-axis and 0.05 for the y-axis. The Gaussian random field had a 

mean of zero and a covariance given by C(h) = 5exp
(

− h
10

)

, where h is 

the lag distance. This map was multiplied by a factor of 0.3 to obtain the 
reference map. Nine modifications of the reference map were created to 
give nine maps with predictions:  

1. a map positionally shifted by 20 cells in the x-direction and the y- 
direction,  

2. a map where the x- and y-coordinates are reversed,  
3. a map containing the mean value of the reference map at each 

coordinate, 

Fig. 2. Taylor diagram with a test map and a “reference” point. The red point at (1,0) is the reference point. The red dashed lines represent the distance in 
standardized SDE (Eq. (9)) from the reference point. 

Fig. 3. Graphical representation of the geometric relationship between the map 
quality indices, the root mean square error (RMSE), mean error (ME) and 
standard deviation of the error (SDE). The distance from the origin at (0,0) to 
point P equals to the RMSE. 
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4. a smoothed map obtained by a moving average window of size 5 × 5 
units,  

5. a negatively biased map obtained by adding a value of 1 to the 
reference map,  

6. a map predicted by a random forest model with a single tree and 
default parameters from the R package ranger (Wright and Ziegler, 
2017) using the reference map as calibration data and the x- and y- 
coordinates as predictors,  

7. a map predicted by a single regression tree with default parameters 
from the R package rpart (Therneau et al., 2019) using the reference 
map as calibration data and the x- and y-coordinates as predictors,  

8. a map of the upper quartile, made by assigning the mean of the 
reference map to the values lower than the upper quartile and value 
of the reference map otherwise,  

9. a map of the lower quartile, made by assigning the mean of the 
reference map to the values higher than the lower quartile and the 
value of the reference map otherwise. 

Results Fig. 5 shows the reference map that represents a simulated 
map of a soil property and the nine variants of this map. The map quality 
indices described in Section 2 are shown in Table 1. 

Table 1 shows that the MAE and RMSE are always greater or equal to 
the ME. There is no clear relationship between the ME and the MAE, 

Fig. 4. Standardized solar diagram rendering the simulated maps and the reference map. The points inside the thick black line at RMSE* = 1 indicates the threshold 
for which the map is better than the mean of the observations taken at prediction. The yellow colour gradient represents areas where Pearson’s correlation coefficient 
is greater than 0, 0.7, 0.9 and 0.95. The solid outer circle also delimits the area where Pearson’s correlation coefficient is greater than 0 and where MEC > 0. 

Fig. 5. Simulated reference map and modifications: (1) positionaly shifted, (2) reversed, (3) map of the mean, (4) smoothed, (5) with negative bias, (6) predicted by 
random forest, (7) predicted by regression tree, (8) upper quartile or mean, and (9) lower quartile or mean. 
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except for the negative bias maps, in which the MAE is positive (as is by 
definition) while the ME is negative. The RMSE is affected by the scale of 
the error. For the lower quartile map (i.e. when assigning the mean to 
the values higher than the lower quartile) the RMSE is 54% larger than 
the MAE. Large value of the ratio RMSE/MAE points to the presence of 
large error values affecting the RMSE (e.g. in the lower quartile and 
random forest maps). The characteristics of the RMSE and its decom-
position was further discussed in Section 3. Note also that the mean map 
and the negative bias map have the same MAE, even-though the nega-
tive bias map is more plausible as judged by the eye. 

Values of r and its square are nearly one for the random forest, biased 
and smoothed maps, indicating a strong correlation between the refer-
ence and predicted pattern, yet the values for these two maps are sub-
stantially dissimilar from those of the reference map. At the other 
extreme, it is possible to obtain an r value and its square of 0 when the 
map is a constant value but that no variation occurs in the predicted 
map, as shown by the r value of 0 for the mean map. 

Table 1 shows that the values of r2 and MEC are equal for the map 
predicted by random forest and the map predicted by a regression tree. 
This is because in both cases the predicted values are unbiased (ME = 0) 
and follow the line of equality z = ẑ. This is confirmed by fitting a linear 
model with intercept between the predicted values by random forest and 
regression tree and the reference map values. For both predicted maps, 
the intercept is nearly zero and the slope nearly one, indicating that 
there is no substantial deviation from the 1:1 line. In this situation, both 

r2 and MEC are the same. For the case of the reverse map with ME = 0, 
the MEC is negative because the MSE is larger than the variance of the 
true z values (σ2

z = 1.57). 
The nine simulated maps are plotted in the Taylor diagram in Fig. 6. 

The reversed map is the farthest from the reference point, at a distance 
SDE* =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 12 − 2 × 1 × − 0.69

√
= 1.84. The points that come closer 

to the reference point are the ones with the smallest unbiased RMSE 
values (negatively biased map, smoothed map and map predicted by 
random forest). Indeed the smoothed map and the random forest map 
(Fig. 5) seem the most similar to the reference map, but the location of 
the negatively biased map close to the reference map shows the major 
shortcoming of the Taylor diagram, that is the absence of information on 
bias. Points close to the reference point can have large bias, as is the case 
for the negatively biased map in which the RMSE is only composed of 
bias (RMSE = 1, ME = 1, σ* = 1). Including the bias is possible by 
adding a colour scale associated to the point, but the Taylor diagram 
may nonetheless be misinterpreted. This is further discussed in Section 
5. 

The nine simulated maps are plotted in the solar diagram in Fig. 7. 
Note that all quantities are standardized by the standard deviation of the 
values on the reference map (true values) to remove the unit of mea-
surement. The standardized mean error along the x-axis shows that 
several maps are biased, either positively (lower quartile map) or 
negatively (positional error map, negative bias map). Few maps are 
unbiased, see, for example, the reversed, mean or random forest maps. 
These unbiased maps are on the y-axis, which means that the difference 
between the reference and predicted maps is due to variance. Two maps 
are outside the outermost circle at a RMSE* distance of 1. Using these 
maps do not represent an improvement over using the mean of the 
reference map as predictor of the soil property. This is confirmed by the 
mean map falling at the exact RMSE* distance of 1. All points between 
the circle a RMSE* distance of 1 and the origin are positively correlated 
with the reference map. The two other markers at a distance of 0.71 and 
0.44 and 0.31 establish that all points falling between the markers and 
the origin have a correlation value greater or equal than 0.7, 0.9 and 
0.95, respectively. This is illustrated with the yellow colour scale 
showing the Pearson’s r correlation coefficient. The brighter the colour, 

Table 1 
Statistics described in Section 2 of the quality for the simulated and reference 
maps.   

ME MAE RMSE r  r2  MEC 

Reversed  0  1.88  2.31  − 0.7  0.48  − 2.39 
Positional error  − 0.87  1.05  1.31  0.72  0.51  − 0.1 
Mean  0  1.01  1.25  0  0  0 
Smoothed  0  0.19  0.24  0.98  0.97  0.96 
Negative bias  − 1  1  1  1  1  0.36 
Random forest  0  0.2  0.29  0.97  0.95  0.95 
Regression tree  0  0.49  0.61  0.87  0.76  0.76 
Upper quartile  − 0.43  0.58  0.84  0.84  0.7  0.55 
Lower quartile  0.36  0.65  1  0.69  0.48  0.37  

Fig. 6. Taylor diagram rendering the simulated maps and the reference map. The red point at (1,0) is the reference map. The red dashed lines represent the distance 
from the reference point (the standardized SDE, Eq. (9)). 
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the higher the Pearson’s r correlation value. 

4.2. Two applications studies 

We selected a large rectangular area (1,523,776 km2) in Eastern 
Amazonia with values of topsoil organic carbon density (SOC, in dg/kg) 
from the SoilGrids global dataset (Poggio et al., 2021), which we 
aggregated at a spatial resolution with grid cells of 1 km × 1 km. We 
collected an additional set of 28 environmental covariates representing 
average long-term climatic condition (i.e. temperature, precipitation, 
solar radiation, evapotranspiration), climate seasonality (temperature, 
precipitation and solar radiation seasonality), extreme climatic condi-
tion (temperature of driest and warmest quarter, precipitation of wettest 
and driest month, aridity index), topography (elevation, slope), soil 
(topsoil clay and sand content), vegetation (above-ground live woody 
biomass, Shannon enhanced vegetation index, Terra net primary pro-
duction) and average long-term MODIS bands (red, green, NIR, and 
SWIR 1–2). These covariates were obtained from publicly available 
sources such as SoilGrids (Poggio et al., 2021), WorldClim (Fick and 
Hijmans, 2017), and Google Earth Engine. All covariates were harmo-
nized to the spatial resolution and extent of the SOC map. We used the 
SOC map as proxy for the “true” SOC, and selected a sample of size 500 
from this map using simple random sampling. The sample was used for 
model calibration and prediction in two applications, whereas map ac-
curacy statistics were obtained from the entire population, i.e. by pre-
dicting on 1,308,838 grid cells. In the first application various 

parameters combinations of a mapping model were tested, and the effect 
of these parameters on the resulting map quality was tracked with 
summary diagrams. In the second application, we compared five maps 
made by five different models and showed how the summary diagrams 
can be used to convey information on map quality more efficiently than 
with a summary statistics table. 

4.2.1. Tracking effect of model parameters on map quality 
Methods We built a generalized boosted regression tree (GBM) 

model for mapping the topsoil organic carbon content using the set of 28 
environmental covariates as predictor. We repeated the calibration of 
the GBM model for different sets of the shrinkage and interaction.depth

parameters of the GBM implementation in the gbm R package (Green-
well et al., 2020). The shrinkage parameter corresponds to the learning 
rate and the interaction.depth to the maximum depth of each tree. For 
more information on GBM, we refer to Hastie et al. (2009). We tested 10 
combinations of parameters using Latin hypercube sampling of the 
shrinkage parameter between 0.00001 and 1 and of the interaction.depth

parameter between 1 and 10. Other model parameters were held at their 
default value. The map quality indices resulting from the calibration of 
10 mapping models were visualized in the Taylor and solar diagrams. 

Results The diagrams in Figs. 8 and 9 show the map quality for 
different values of the shrinkage and interaction.depth parameters of the 
GBM mapping model. In Fig. 9, points in the Taylor diagram are clus-
tered between SDE* values of 0.5 and 0.75, between correlation coef-
ficient values of 0.7 and 0.9, and between standardized standard 

Fig. 7. Standardized solar diagram rendering the simulated maps and the reference map. The points inside the thick black line at RMSE* = 1 indicates the threshold 
for which the map is better than the mean of the reference map taken at prediction. The outer circle and the inner circles enclose areas where r is greater than 0, 0.7, 
0.9 and 0.95. The colour scaling on the points represents the modelling efficiency coefficient (MEC) between the reference and simulated map. 
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deviation values of 0.5 and 1.3. The labels show that a small value of the 
learning rate is preferable in combination with a moderately high value 
of the depth parameter. Interaction of the learning rate and depth pa-
rameters also shows that the worse result is found for the combination of 
very small learning rate and large depth parameter. 

In both diagrams, the same point (i.e. for shrinkage = 0.16 and 
interaction.depth = 8.02) comes closest to the reference point (Taylor 
diagram) and origin (solar diagram) and so have a similar SDE* and 
RMSE* value, which indicates that the predictions for this combination 
of parameters are relatively unbiased. This is confirmed in the solar 

diagram, where this point is close the y-axis: predictions are nearly 
unbiased so that the primary contribution to the RMSE is the SDE (Eq. 
(3)). In the absence of bias, both diagrams lead to the same conclusion 
on the optimal parameters combination of the mapping model. A 
different pattern between the plots is observed for the point with pa-
rameters shrinkage = 0.93 and interaction.depth = 3.15 and the point with 
parameters shrinkage = 0.01 and interaction.depth = 9.81. In the Taylor 
diagram, this former point appear better than the latter point, because 
closer to the standardized standard deviation value of 1. In the solar 
diagram, an opposite pattern is shown: the point with parameters 

Fig. 8. Taylor diagram rendering the 10 simulated maps predicted with different sets of shrinkage and interaction.depth mapping model parameters and compared to 
the reference point at (1,0). The red dashed lines represent the distance from the reference point (the standardized SDE, Eq. (9)). The labels indicate the parameter 
values of the GBM mapping model (shrinkage; interaction.depth). 

Fig. 9. Solar diagram of the 10 maps obtained with different sets of shrinkage and interaction.depth mapping model parameters. The labels indicate the parameter 
values of the GBM mapping model (shrinkage; interaction.depth). 
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shrinkage = 0.01 and interaction.depth = 9.81 would be preferred because 
it has less bias for a similar value of RMSE*. 

4.2.2. Comparing soil maps made by different models 
Methods We built six common mapping models for mapping the 

topsoil organic carbon using the set of 28 environmental covariates as 
predictor. The parameters of models were chosen manually. Note that 
the aim of this case study is to compare soil maps, not to compare and 
evaluate the performance of models, so no conclusion about the sup-
posed superiority of a model should be drawn from this study case. We 
used the R programming language (R Core Team, 2020) to implement 
and compare maps created by:  

1. Linear regression, using the default implementation from the stats

package.  
2. Regression tree with the maximum depth of the tree set to 30, a 

complexity parameter of 10− 9 and the maximum number of obser-
vations in a split set to 2. We used the implementation of the rpart

package (Therneau et al., 2019).  
3. Cubist with 10 committee models and the implementation of the 

Cubist package (Kuhn et al., 2020).  
4. Random forest with 500 trees and other parameters set to their 

default value as in the ranger package (Wright and Ziegler, 2017).  
5. Neural networks with a single-hidden layer, 5 units and decay 

parameter value of 2, using the implementation of the nnet function 
in the caret package (Kuhn, 2008).  

6. Support vector machine with the default implementation of the 
e1071 package (Meyer et al., 2020). 

For each map the quality indices were reported on the Taylor and 
solar diagrams. 

Results The map quality indices are presented in Table 2 and plotted 
in the diagrams in Figs. 10 and 11. Table 2 shows that most models are 
unbiased, except cubist, neural networks and support vector machine. 
The largest ME values are obtained by the map made by support vector 
machine (ME = − 7.35) and neural networks (ME = 3.52). Map quality 
indices presented in Table 2 show that it is generally difficult to decide 
on the best map because it varies from one criterion to another. For 
example, values of the MEC, r and its square indicate that the map made 
by the random forest model is the most accurate. Plotting the statistics in 
the diagrams in Figs. 10 and 11 facilitates the choice of a mapping 
model. According to Figs. 10 and 11, the map made by the regression 
tree is the farthest away from the reference point, whereas the map made 
by cubist and random forest are the second closest and closest points to 
the reference point, respectively. While values of SDE* (Taylor diagram) 
are nearly similar for both models, inclusion of the bias in the values of 
RMSE* as is done in the solar diagram is slightly exaggerating the 
advantage of the map made by random forest over that made by cubist. 
In both diagrams, the map made by random forest appears to be the 
closest from reality. 

Besides description of the diagrams in terms of their individual 
components (i.e. the SDE in the Taylor and RMSE in the solar diagram), 
indices can be considered together with respect to the aim of the map. 
For instance, random forests and cubist models have similar RMSE, SDE 

and r values, but differ in bias. If the aim is to use the map as input to a 
process model, then one probably would prefer the cubist model as the 
additional bias is judged to be less of a problem than underestimating 
spatial variation. However, if the aim is not only to produce a high 
quality map, but also to use models that are easily interpretable, one 
may focus on either a linear regression or a regression tree without 
substantial decrease in SDE and RMSE. If again one needs a map without 
too much smoothing, then the regression tree may be the better choice, 
although linear regression is slightly more accurate and precise and 
slightly better reproduces spatial patterns. 

5. Discussion and conclusions 

The literature (e.g Armstrong, 2001; Willmott and Matsuura, 2005; 
Jolliff et al., 2009) showed that no single statistical quantity can 
represent all aspects of map quality. Correlation-based indices, for 
example the Pearson’s r and r2, can yield a misleading picture of the map 
accuracy. A more useful, albeit related measure is the MEC which 
quantifies the improvement made by the map over using the mean of the 
observations as a predictor, and is sensitive to deviation from the line of 
equality z = ẑ. In addition to relative map accuracy indices, it is strongly 
recommended to report an index of the overall bias by the ME, as well as 
average error indices such as MAE and RMSE. They are easy to interpret 
because they are in the unit of the soil property, but the RMSE is 
disproportionately affected by large error values. Overall, it is strongly 
recommended to use multiple and complementary map quality indices 
for map quality evaluation, not just a single index or a list of comparable 
indices. 

By exploiting the statistical relationships between indices, it is sen-
sible to plot these different indices into a single plot. Taylor and solar 
diagrams are designed for this purpose. The Taylor diagram explicitly 
conveys information on correlation, standard deviations of the predicted 
and observed values, and standard deviation of the error. In the solar 
diagram, also other aspects are included, such as bias and overall RMSE, 
providing a broader overview on the map quality than the Taylor dia-
gram. It is possible to convey information on overall RMSE and bias in 
the Taylor diagram via the addition of a colour scale. Alternatively, 
considering the SDE as a vector from the point representing the map to 
evaluate to the reference point, Taylor (2001) proposed to visualize bias 
by a vector starting from the point representing the map to evaluate. 
This vector is perpendicular to the SDE-vector, and the vector sum of the 
SDE-vector and bias-vector is equal to the RMSE (i.e., it follows the 
geometric relationship of Eq. (10) as is done in the solar diagram). A 
graphical representation is provided in Fig. 12. However, this solution is 
possible only in the case of a limited number of maps to evaluate due to 
overplotting. Another way to include the bias is to extend the Taylor 
diagram to 3 dimensions, in which the distance between any point in the 
3-D space and the reference point is equal to the RMSE. 

Overall, both Taylor and solar diagrams provide an integrated and 
visually attractive solution to evaluate quantitative soil maps. In the 
examples it was shown in a variety of ways that map quality is better 
evaluated through the combined effect of statistical indices. In the first 
example we created different soil maps and compared them to a refer-
ence map. We consider that Taylor and solar diagrams provided better 

Table 2 
Statistics of the map quality indices described in Section 2, with SDE* and RMSE*. The SDE* measures the distance to the reference point in the Taylor diagram while 
the RMSE* measures the distance to the origin in the solar diagram.   

SDE*  RMSE*  ME MAE RMSE r  r2  MEC 

Linear regression  0.67  0.67  − 0.01  42.30  59.55  0.74  0.40  0.55 
Regression tree  0.74  0.74  0.22  42.60  65.84  0.72  0.34  0.45 
Cubist  0.53  0.54  − 1.21  30.77  47.50  0.85  0.52  0.71 
Random forest  0.52  0.52  0.14  30.36  46.19  0.86  0.58  0.73 
Neural networks  0.72  0.72  3.52  43.68  64.04  0.74  0.33  0.48 
Support vector machine  0.60  0.60  − 7.35  33.34  53.68  0.82  0.57  0.63  
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insight into map quality, instead of using a list of indices. This was also 
the case for the second example: summary diagrams made simple the 
decision of the best map, via understanding of how much of the 
disagreement is cause by bias, variance and lack of correlation. In our 
example of choosing the mapping model parameters among 10 possible 
choices, choice of the optimal mapping model based on the r2, as is often 
done in practice, yielded a different map than when using the diagrams. 
The diagrams also showed that for some parameter choice, using the 
mean of the observations was better than using the model. 

Taylor (2001) and Jolliff et al. (2009) described improvement of 
Taylor and solar diagrams by means of skill scores instead of RMSE- 
based metrics. RMSE-based metrics are potentially deficient in that for 
a given value of the correlation (r less than unity), the minimum value of 
RMSE is found when the standardized standard deviation σ* equals the 

correlation (i.e. σ* = r, see also Section 3.2), instead of the ideal value 
σ* = 1. Take the case of the positional error and lower quartile map in 
Fig. 6. Both maps have correlation nearly equal r = 0.7, and for this 
correlation value the minimum SDE* occurs at σ* = 0.7. Consequently 
the lower quartile map appears more accurate because closer to σ* =

0.7, but in reality the positional error map could be preferred because 
closer to the ideal value σ* = 1. In other words, RMSE-based metrics 
may be inappropriate if the ultimate goal is to move both correlation and 
standardized standard deviation to an optimal value of 1. For these 
reasons, Taylor (2001) and Jolliff et al. (2009) proposed skill diagrams 
using skill scores for which reduction in the RMSE or SDE are not 
necessarily made at the expense of the standardized standard deviation. 
Integrating the skill scores in Taylor and solar diagrams would certainly 
be a valuable contribution to future research. 

Fig. 10. Taylor diagram of the 6 common mapping models for mapping topsoil organic carbon, and compared to the reference point at (1, 0). The red dashed lines 
represent the distance from the reference point (the standardized SDE, Eq. (9)). 

Fig. 11. Solar diagram of the 6 common mapping models for mapping the topsoil organic carbon, and compared to the reference point at coordinates (0, 0). The 
colour scaling is the modelling efficiency coefficient (MEC) computed from the observed and predicted values of topsoil organic carbon. 
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Finally, it is in principle possible to account for measurement error of 
the validation data. Estimation of the measurement error is beyond the 
scope of this paper, but in estimating soil property errors may arise from 
the laboratory analysis method and in the type of inference, for example, 
when soil data are inferred with infrared spectroscopy techniques or 
pedotransfer functions. When explicit assessment of the error associated 
with soil data is made, it can be included in the diagrams in various 
ways. Taylor (2001) simply plotted both the reference point and the 
reference point resulting from measurement error. The distance between 
the two is a visual representation of measurement error. Jolliff et al. 
(2009) represented this error with a circle centered at the origin, the 
radius of which equals measurement error. Points falling between this 
circle and the origin are within the range or soil data measurement error. 
In this range, further improvement in mapping accuracy is unlikely to be 
meaningful. Both diagrams could also potentially be extended in three 
dimensions. Further details for this extension is found in Taylor (2001). 

6. Code availability 

Code for computing the map quality indices, Taylor and solar dia-
grams in the R programming language are available via an open access 
link at https://github.com/AlexandreWadoux/MapQualityEvaluation, 
along with a reproducible example using simulated data. 
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