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Abstract
1.	 Global, continental and regional maps of concentrations, stocks and fluxes of 

natural resources provide baseline data to assess how ecosystems respond to 
human disturbance and global warming. They are also used as input to numerous 
modelling efforts. But these maps suffer from multiple error sources and, hence, 
it is good practice to report estimates of the associated map uncertainty so that 
users can evaluate their fitness for use.

2.	 We explain why quantification of uncertainty of spatial aggregates is more com-
plex than uncertainty quantification at point support because it must account 
for spatial autocorrelation of the map errors. Unfortunately, this is not done in a 
number of recent high-profile studies. We describe how spatial autocorrelation of 
map errors can be accounted for with block kriging, a method that requires geo-
statistical expertise. Next, we propose a new, model-based approach that avoids 
the numerical complexity of block kriging and is feasible for large-scale studies 
where maps are typically made using machine learning. Our approach relies on 
Monte Carlo integration to derive the uncertainty of the spatial average or total 
from point support prediction errors. We account for spatial autocorrelation of 
the map error by geostatistical modelling of the standardized map error.

3.	 We show that the uncertainty strongly depends on the spatial autocorrelation 
of the map errors. In a first case study, we used block kriging to show that the 
uncertainty of the predicted topsoil organic carbon in France decreases when the 
support increases. In a second case study, we estimated the uncertainty of spatial 
aggregates of a machine learning map of the above-ground biomass in Western 
Africa using Monte Carlo integration. We found that this uncertainty was small 
because of the weak spatial autocorrelation of the standardized map errors.

4.	 We present a tool to get realistic estimates of the uncertainty of spatial aver-
ages and totals of natural resource maps. The method presented in this paper 
is essential for parties that need to evaluate whether differences in aggregated 
environmental variables or natural resources between regions or over time are 
statistically significant.
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1  |  INTRODUC TION

Large-scale mapping of concentrations, stocks and fluxes of natu-
ral resources is important for many purposes. Global, continental 
and regional maps of biophysical variables provide baseline data to 
assess how ecosystems respond to human disturbance and global 
environmental processes. They are used by modellers as well as end-
users (Kullberg & Moilanen,  2014; Mokany et al.,  2020; Schmidt-
Traub, 2021). These maps also support climate change research. For 
instance, global maps of above-ground and below-ground carbon 
stocks and fluxes are crucial to evaluate whether there is a net posi-
tive or negative land-based emission of carbon into the atmosphere. 
In past years, a number of maps have been generated to inform and 
track ecosystem changes at continental and global scale. Some recent 
examples are maps of soil bacteria (Delgado-Baquerizo et al., 2018), 
above-ground biomass (AGB; Baccini et al.,  2012), above- and 
below-ground biomass carbon density (Spawn et al., 2020) and plant 
biomass (Ma et al., 2021), forest cover change (Hansen et al., 2013), 
landcover change (Song et al., 2018) and soil organic carbon concen-
tration and stocks (Padarian et al., 2022; Poggio et al., 2021).

Natural resource maps suffer from multiple error sources that 
affect their quality so that it is common practice to report an esti-
mate of the map uncertainty. If maps are made using IPCC guide-
lines (Eggleston et al., 2006) then map uncertainty is often estimated 
by propagating the input uncertainties associated with the activity 
data and emission/removal factors. This uncertainty propagation 
approach, which ignores model structural uncertainty, was, for ex-
ample, used in Harris et al. (2021) to map atmospheric greenhouse 
gas fluxes from global forest lands to obtain approximations of 
the lower and upper limits of a 95% prediction interval. Ahlström 
et al.  (2012) estimated the global spatio-temporal carbon balance 
and obtained the associated uncertainty by simulating the carbon 
balance with a global vegetation model that used output from 18 
different climate models. A similar approach was taken by Berthelot 
et al. (2005), where uncertainty in the simulated land carbon cycle 
response was quantified by running a global terrestrial carbon cycle 
model with inputs derived from 14 different ocean and atmosphere 
general circulation models. Alternatively, some studies have used 
bootstrapping strategies to quantify uncertainty. For instance, 
Saatchi et al. (2011) reported the uncertainty of forest carbon stock 
maps using a MaxEnt model and bootstrapping, whereas in Cook-
Patton et al. (2020) global maps of carbon accumulation rates with 
uncertainty were obtained by fitting 100 random forest models on 
100 bootstrap samples of the measurements, and by computing the 
pixel-wise standard deviation of the 100 model predictions. Mapping 
methods that explicitly quantify prediction uncertainty also exist, 
such as kriging (Webster & Oliver,  2007) and quantile regression 
methods (e.g. quantile regression forest [QRF], Meinshausen, 2006, 

as used in Baccini et al., 2012). Hengl et al.  (2014) used regression 
kriging to map soil carbon stocks obtained at point locations along 
with an estimate of the uncertainty assessed by the point kriging 
variances. Poggio et al.  (2021) quantified prediction uncertainty of 
global maps of basic soil properties using QRFs. These studies show 
that many solutions exist to quantify the uncertainty of spatial pre-
dictions, although some do not capture all uncertainty.

For mapping with machine learning, there is uncertainty in the 
measurements used to fit the model, uncertainty due to the use of 
a limited training dataset and uncertainty caused by the fact that 
the covariates explain only part of the spatial variation of the re-
sponse variable. Of these three, the first is often ignored (one as-
sumes that the training data have no measurement errors), but for 
a study where it is included see Wadoux et al.  (2019) or Van der 
Westhuizen et al.  (2022). The second uncertainty source is usually 
assessed using bootstrapping, while the third is characterized by the 
residual variance and is in most cases the main source of uncertainty. 
While many studies report an estimate of the uncertainty, this is 
often done with techniques that report a confidence interval (e.g. 
with bootstrapping the training data) instead of a prediction interval. 
A confidence interval is likely to grossly underestimate the overall 
uncertainty because it only considers the second source of uncer-
tainty mentioned above. A prediction interval accounts for both the 
second and third source of uncertainty and is, therefore, wider than 
a confidence interval. In a recent study, McRoberts et al. (2022) pro-
posed an uncertainty assessment that accounts for both sampling 
and residual uncertainty, which correspond to the second and third 
sources of uncertainty. Hereafter we consider uncertainty caused 
by the second and third sources.

Many studies also report on spatial averages or totals of the 
mapped variable, either for the whole study area or for geographies 
within it, such as national or bioclimatic domains. Averages and to-
tals are informative with respect to international coordinated ef-
forts to assess trajectories and for climate change research. Baccini 
et al. (2012), for instance, reported the total carbon stored in above-
ground live woody vegetation by country and sub-region. They did 
so by calculating the sum of all carbon stock pixel values within the 
area and compared their estimates with existing products. Santoro 
et al. (2021) made global maps of AGB and provided country-specific 
statistics of forest area and total AGB, to enable comparison with 
country-specific data from an FAO FRA survey of 2010. Another 
example is Wiesmeier et al.  (2011) in which total soil organic car-
bon, total carbon, total nitrogen and total sulphur stocks were es-
timated for different land use units in the Xilin River Catchment in 
China. More recently, the web platform https://soils​revea​led.org/ 
was launched and supports spatial aggregation of soil organic car-
bon stocks to countries and other geographies. Generally, spatial 
aggregation through summing or averaging is straightforward and 

K E Y W O R D S
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performed by simply adding up or averaging the spatial predictions 
over the area of interest.

The question addressed in this paper is how to obtain the uncer-
tainty of spatial aggregates. While this is highly relevant because it 
is required for significance testing, such as when carbon accounting 
projects need to demonstrate that carbon sequestration in a region 
was successful over a given period of time, it is more difficult than 
computing the spatial aggregate of the predictions. For instance, 
it is incorrect to estimate the uncertainty of a spatial average by 
averaging the uncertainties at all points over which the average is 
computed. This strongly overestimates the uncertainty of the spa-
tial aggregate, because it ignores the fact that map errors partially 
cancel out. In fact, the uncertainty of a spatial aggregate strongly 
depends on the degree of spatial autocorrelation of the map errors 
and hence this must be taken into account when the uncertainty of a 
spatial average or total is computed. While this fact is well-known to 
geostatisticians (see for instance Isaaks & Srivastava, 1989, chapter 
8), it is largely disregarded by the global mapping community. For 
instance, Lugato et al. (2014) ignored spatial autocorrelation of the 
map error when computing the uncertainty of aggregated soil or-
ganic carbon maps for NUTS2 regions in Europe. Harris et al. (2021) 
and Plaza et al.  (2018) assumed map errors to be spatially uncor-
related when the uncertainty of global forest carbon fluxes and to-
tals of element stocks in drylands were derived. As we will show in 
the next section, this assumption leads to an underestimation of the 
actual uncertainty because it means that practically all map errors 
cancel out when aggregation is done over a large number of points.

Under- or overestimation of the uncertainty of spatial aggregates 
can have serious consequences. It means that end-users will be too 
confident or not confident enough about the aggregated products. 
This is a problem for a number of applications, such as when the 
maps are used to inform policy-makers and coordinate international 
efforts (e.g. to mitigate climate change). It also leads to unrealistic re-
sults in spatial uncertainty propagation applications, when the map 
is used as input to an environmental model (e.g. with Earth System 
models). To date, only few studies (e.g. Kros et al., 2012; Lesschen 
et al., 2007) used methodologies that explicitly account for spatial 
autocorrelation of the map error during the aggregation process. 
Geostatistical modelling and prediction (e.g. Kempen et al.,  2019) 
combined with block kriging (Cressie, 2015) is a preferred solution 
to map environmental variables and estimate the uncertainty of 
aggregated variables in presence of autocorrelated error. However, 
the use of block kriging for large-scale and global applications is lim-
ited because it is computationally demanding. It also requires geo-
statistical expertise, which many map makers do not have. Further, 
global and large-scale maps are nowadays often made using machine 
learning (see, for example, the studies of Ma et al.,  2021; Poggio 
et al., 2021; Saatchi et al., 2011), which does not account for spatial 
autocorrelation and so cannot quantify the uncertainty of spatial ag-
gregates (Heuvelink & Webster, 2022).

The objectives of this paper are to (1) show that the uncertainty of 
spatial aggregates strongly depends on the spatial autocorrelation of 
the map errors; (2) explain and illustrate how spatial autocorrelation 

can be properly accounted for in block kriging and (3) propose and 
test an alternative model-based approach that accounts for spatial 
autocorrelation of map errors to quantify uncertainty in spatial av-
erages and totals, one that avoids the numerical complexity of block 
kriging and is feasible for large-scale machine learning studies. In the 
following three sections, we discuss each of these objectives and 
use a synthetic dataset and two real-world case studies to illustrate 
the methodology.

2  |  UNCERTAINT Y OF SPATIAL 
AGGREGATES

Consider a biological, ecological or environmental variable 
z = {z(s), s ∈ } in a study area . In practice we can only approxi-
mate z by a map ẑ =

{
ẑ(s), s ∈ }

 and so at each location s there is a 
map error e(s) = z(s) − ẑ(s). These errors are usually not known (oth-
erwise we would eliminate them by replacing ẑ by ẑ + e). Instead, 
we treat e(s) as a realization of a random variable �(s), which is fully 
characterized by a probability distribution F(s). Kriging, QRFs and 
Monte Carlo uncertainty propagation are examples of techniques 
that produce these map error probability distributions. In this way, 
we can quantify the map accuracy at each location s, for instance by 
the mean and variance of �(s) or by a prediction interval (e.g. the dif-
ference between the 0.95 and 0.05 quantiles of F(s)).

The probability distribution of �(s) for any s ∈  depends on 
many factors, such as the degree of spatial variation of the response 
variable, the density and locations of training data, the explanatory 
power of the covariates, and the mapping method. It also depends 
on the support of the measurements and predictions, that is, the 
area or volume over which a measurement or prediction is made. 
For instance, soil samples can have ‘point’ support, that is a volume 
of soil of the order of 1 dm3 at a point location or can have a big-
ger support, such as when a composite soil sample is taken within a 
block of 5 m × 5 m or 10 m × 10 m at a specific depth interval, typically 
the 0–20 or 0–30 cm topsoil. Likewise, in ecology the average AGB 
could, for example, be measured on a spatial support of a 10 m × 10 m 
plot or for a circular area with 5 m radius. In mining, the measurement 
support typically is a volumetric unit such as a drill hole core or a 
rock chip. While sensu stricto these supports are not points because 
they have a non-zero area or volume, they are small compared to the 
extent of the study area and often considered as points. Note that 
the variability of measured properties largely depends on their sup-
port. For instance, the variability of soil properties may differ greatly 
between single soil samples and composite soil samples, especially 
when the micro-scale soil variation is large (Webster & Oliver, 2007, 
section 4.8). It is more work to collect a composite soil sample than 
a single soil sample but the advantage is that micro-scale variation 
is eliminated. Note also that in mapping, usually the support of the 
predictions is equal to that of the measurements. Thus, a prediction 
ẑ(s) refers to the value that one expects to get if one would measure 
at s in the same way that the training data were obtained. Likewise, 
�(s) refers to the difference between the predicted and true value 
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at s at the measurement support. This is important, because we will 
see below that the variance of �(s) strongly depends on the support.

2.1  |  Uncertainty of spatial averages illustrated 
with synthetic examples

In practice, predictions are often required at a support larger than 
that of the measurements. For instance, we may wish to map the 
AGB for entire forest stands, management zones or regions. We 
refer to a support that is much larger than that of the point measure-
ments as the ‘block’ support, which can be a square grid cell but also 
an irregularly shaped region. A change of support has an effect on 
prediction and prediction uncertainty (Heuvelink, 1998, section 2.5). 
For prediction, moving from point to block support is easy when the 
aggregation process is linear, such as when we predict the arithmetic 
mean of the point support values within the block:

where B ⊆  is the block and n is the number of points used to discretize 
the block and approximate the integral. While the difference between 
point and block predictions is often modest, spatial averaging typically 
leads to a substantial decrease of the uncertainty. This is demonstrated 
by computing the variance of the block-average map error:

where cov(�(s), �(u)) is the covariance of the map errors at locations 
s and u.

If we discretize the block B into a finite number of n points as 
before then the variance of the block-averaged map error is esti-
mated by

The discretization involves an approximation error which be-
comes smaller as n increases. Equation (3) shows the importance of 
the covariance term: if the correlation between �

(
si

)
 and �

(
sj

)
 is zero 

for all si ≠ sj (i.e. no spatial autocorrelation of map errors) then the 
variance reduces to zero; if the correlation is one for all si and sj then 
there is no reduction of uncertainty. This is graphically illustrated for 
a one-dimensional case in Figure 1.

Let us also illustrate the variance reduction effect with spatial 
stochastic simulation in a two-dimensional synthetic case. On a grid 
of size 100 cells × 100 cells, we simulated three cases of a stationary 
isotropic normally distributed random field, characterized by a cor-
relation function representing map errors with a weak, moderate and 
strong spatial autocorrelation. Spatial autocorrelation was character-
ized by an exponential model (Webster & Oliver,  2007) with three 
parameters: a range parameter, a nugget-to-sill ratio and a sill value. 
We used a range parameter of 30 units in all cases and a nugget-to-sill 

ratio equal to two-thirds for weak, one-third for moderate and zero for 
strong spatial autocorrelation. We generated 500 possible realities for 
each of the three cases using unconditional sequential Gaussian simu-
lation (Webster & Oliver, 2007, chapter 12). The mean of the random 
field was set to zero and the variance (i.e. the sill of the variogram) to 
one in all cases. Each of the three rows in Figure 2a shows four exam-
ple realizations for each case. Next, we computed the spatial average 
for each of the 500 realities per case. Figure 2b shows boxplots of the 
500 spatial averages for each case. The box plots clearly show that 
the spatial average of the map error is smallest for the weak spatial 
autocorrelation case and largest for the strong spatial autocorrelation 
case. Note that in case of zero spatial autocorrelation (i.e. a pure nug-
get variogram), the boxplot would have nearly collapsed to a single 
value close to zero. In that case, the standard deviation of the spatial 
average error would be 100 times smaller than that of the point sup-
port error, as is also evident from Equation (3).

3  |  SPATIAL AGGREGATION WITH BLOCK 
KRIGING

Geostatistical modelling and prediction with block kriging is a well-
developed theory and thoroughly described in standard textbooks 
(Goovaerts,  1997; Webster & Oliver,  2007). In this section, we 
briefly summarize block kriging as a means to predict block averages 
of a target variable from point measurements and obtain the associ-
ated prediction uncertainty. We also explain how block kriging of 
map errors may be used to estimate the uncertainty of spatial aver-
ages of maps that were not made using kriging.

3.1  |  Block kriging of a target variable

Geostatistical prediction of block averages and quantification of 
the associated prediction uncertainty starts by defining a geosta-
tistical model of a target biological, ecological or environmental 
variable as:

(1)ẑB =
1

∣ B ∣ ∫s∈Bẑ(s)ds ≈
1

n

n∑

i=1

ẑ
(
si

)
,

(2)var

(
1

∣ B ∣ ∫s∈B�(s) ds
)

=
1

|B|2 ∫s∈B∫u∈Bcov(�(s), �(u)) du ds,

(3)

var

(
1

n

n∑

i=1

�
(
si

)
)

=
1

n2

n∑

i=1

var
(
�
(
si

))
+

2

n2

n−1∑

i=1

n∑

j=i+1

cov
(
�
(
si

)
, �
(
sj

))
,

F I G U R E  1  Spatial averaging of map error (y-axis) for three 
realizations (coloured lines) along a spatial transect (x-axis), in 
case of weak spatial autocorrelation (top) and strong spatial 
autocorrelation (bottom). Dashed lines represent the error range.
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where m is the trend or drift of the target variable and � is a zero-
mean stochastic residual, whose spatial variability is characterized 
by the semivariance �

(
s, s′

)
=

1

2
E

[(
�(s)−�

(
s′
))2], which must be 

defined for all combinations of locations s and s′ in . The trend is 
typically modelled as a linear function of environmental covariates 
in the form m(s) =

∑K

k=0
�kfk(s), where the �k are regression coeffi-

cients and the fk spatially distributed covariates (Hengl et al., 2004). 
Note that it is common to define f0(s) ≡ 1 for all s so that �0 rep-
resents the intercept of the regression. Alternatively, the trend may 
be taken as the outcome of a mechanistic or machine learning model 
(for an example, see Section 3.2). For simplicity we will assume here 
that m(s) is constant, but the theory easily extends to the case of a 
non-constant trend. In addition, we will also assume that � is second-
order stationary, which means that it has constant variance and that 
the semivariance only depends on the separation distance between 
locations, that is �

(
s, s′

)
= �

(
s − s′

)
. The function that defines the 

semivariance as a function of separation distance is known as the 
variogram.

Let there be n measurements z
(
si

)
 ( i = 1, … , n )) of the target 

variable. Ordinary block kriging predicts the average of Z in block B 
as a weighted average of these measurements:

where �i is a weight associated with measurement z
(
si

)
. The weights 

are chosen such that the expected squared prediction error, also 
known as the block kriging variance, is minimized, under a condi-
tion of unbiasedness. The weights are obtained by solving a linear 
system of n + 1 by n + 1 equations, which depend on the variogram. 
Any geostatistical study must therefore model the variogram before 
kriging.

The block kriging variance is derived as follows:

where �
(
si ,B

)
 is the average of the semivariance between location si 

and all locations in block B, �
(
si − sj

)
 is the semivariance between loca-

tion si and sj, and �(B,B) is the within block variance, that is the average 
of all semivariances between all paired locations in the block.

Values predicted by block kriging are usually slightly smoother 
than those obtained with point kriging and the block kriging vari-
ance is generally much smaller than the point kriging variance. Thus, 
predictions of spatial averages are less uncertain than predictions 
at points, as already noted in Section 2. This is also apparent from 
Equation  (6), which has a term that subtracts the within-block 
variance. This term is absent in case of point kriging (see Oliver & 
Webster, 2015, section 4.2). Equation (6) shows that the block krig-
ing variance is much smaller than the point kriging variance in a case 
where the within-block variance is large, that is when there is weak 
spatial autocorrelation (see Figures 1 and 2).

Block kriging requires the within-block variance, which involves 
a double integration. This may become computationally intensive for 
large-scale applications where the number of measurements used to 
discretize the block is large. This is further discussed with a solution 
for large-scale applications in Section 4.

3.2  |  Application to topsoil organic carbon mapping 
in France

We used data from the French Soil Monitoring Network (RMQS; 
Saby et al., 2020) composed of 2084 topsoil (0–30 cm) samples with 
values of organic carbon content (g kg−1). The RMQS dataset is based 
on a systematic grid sampling design with a grid spacing of 16 km, 
covering mainland France. A composite soil sample was obtained at 

(4)Z(s) = m(s) + �(s),

(5)ẑ(B) =

n∑

i=1

�iz
(
si

)
,

(6)

var

(
Ẑ(B)−Z(B)

)
=E

[{
Ẑ(B)−Z(B)

}2
]

=2

n∑

i=1

�i�
(
si ,B

)
−

n∑

i=1

n∑

j=1

�i�j�
(
si−sj

)
−�(B,B),

F I G U R E  2  Example of four out of 
500 simulated realities of a map error 
for the weak (top row), moderate (middle 
row) and strong (bottom row) spatial 
autocorrelation cases (a) and boxplots of 
the spatial averages of the 500 realities 
(b).

–4 –2 0 2 4

–1.5 –1.0 –0.5 0.0 0.5 1.0

weak moderate strong

(a) (b)
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each sampling location by mixing 25 individual soil cores collected 
according to an unaligned design within a 20 × 20 m area. Organic 
carbon data were obtained by the dry combustion method. We 
further collected a set of five spatially exhaustive covariates: eleva-
tion (in meters Rabus et al., 2003), slope (percent), long-term aver-
age precipitation (mm) and temperature (°C) from the set of BioClim 
variables (Fick & Hijmans, 2017), and the MODIS SWIR 2 (Lyapustin 
et al., 2018) long-term mean. All covariates were either aggregated 
or resampled with bilinear interpolation to have the same spatial res-
olution with grid cells of 250 m × 250 m and projected to the Lambert 
93 coordinate system.

With the topsoil OC data and their matching values of envi-
ronmental covariates, we built a block regression kriging model 
composed of a linear trend and spatially correlated residuals. 
We fitted a Matèrrn function to the sample variogram using the 
Method of Moments (Lark, 2000). The fitted variogram had a nug-
get of 212 (g kg−1)2, a partial sill of 91 (g kg−1)2, a smoothness pa-
rameter of 0.5 and an effective range of 96 km. These values are 
similar to those from previous studies on OC mapping in France 
(e.g. Mulder et al.,  2016, supplementary material D). Note that 
here we assumed isotropy so that the separation distance reduces 
to Euclidean distance. Predictions were then made at different 
spatial supports, for points (i.e. the same support as the measure-
ments), aggregated to the 98 mainland French departments, to 
the 12 French regions and to the whole of mainland France. For 
each of these cases, we also computed the block kriging variance 
of the spatial averages.

The block predictions shown in Figure 3 are equal to the average 
of all point predictions within the block, which means that at national 
support the prediction is simply the average of all predictions in 
mainland France. The most important message from Figure 3 is that 
the prediction uncertainty decreases substantially when the support 
increases. For instance, the mean relative error (i.e. the kriging stan-
dard deviation divided by the prediction and multiplied by 100%) at 
point, departmental, regional and national support is 74%, 11%, 5% 
and 1%, respectively.

4  |  UNCERTAINT Y OF SPATIAL AVER AGES 
WITHOUT KRIGING

Block kriging is computationally demanding because it requires 
solving a linear system of equations and computation of the 
within-block variance. For large datasets and global applications, 
block kriging is challenging or might not be possible, but one still 
needs to take spatial autocorrelation of the map error into account 
to get a realistic estimate of the uncertainty of spatial averages 
and totals. It is not only computational problems that hinder the 
use of block kriging. Other obstacles are that it requires geosta-
tistical expertise and that it makes stringent assumptions about 
the statistical properties of the stochastic residual of Equation (4), 
which may not always be realistic.

4.1  |  Proposed approach

To circumvent the problems associated with block kriging, we pro-
pose the following spatial aggregation method, which also quantifies 
the uncertainty of block averages and totals. The method assumes 
that the point support prediction errors are quantified by a probabil-
ity distribution or standard deviation. It accounts for non-stationary 
variance of the point prediction errors but assumes that their spatial 
autocorrelation is stationary. It needs measurements of the target 
variable to assess spatial autocorrelation of map errors, either using 
a separate independent dataset or through a cross-validation ap-
proach. The method consists of eight steps:

1.	 Quantify the prediction uncertainty at point support for all loca-
tions in the study area. For instance, these may be characterized 
by the quantiles of the conditional distribution as obtained using 
QRFs or by conformal prediction (Shafer & Vovk,  2008).

2.	 Compute the point support prediction error standard deviation at 
each measurement and prediction location from its conditional dis-
tribution. When using QRF this can easiest be done by sampling N 
times from the conditional distribution and computing the sample 
standard deviation. The sample size N should be sufficiently large. 
In practice, a number between 200 and 500 should be sufficient.

3.	 At every measurement location, divide the prediction error (i.e. 
the difference between the measurement and the prediction) by 
the prediction error standard deviation obtained in step 2 to ob-
tain the standardized prediction error. Note that the prediction 
errors is obtained at validation locations, that is, the error is de-
rived using a new set of independent data or with cross-validation 
of the training data. In other words, the prediction at a measure-
ment location should be made using a model that was not trained 
with that measurement.

4.	 Estimate a correlation function from the standardized prediction 
errors at measurement locations, for instance, by fitting a vari-
ogram. In that case the correlation function is derived from the 
variogram using the identity �(h) = (sill − �(h))∕sill (Webster & 
Oliver, 2007, section 4.1), where � is the correlation function, sill is 
the estimated sill of the variogram and h is spatial distance. Note 
that here we assume that the standardized prediction errors are 
second-order stationary, that is we assume that the correlation 
between the standardized prediction errors at two locations only 
depends on the Euclidean distance between the locations. This 
is a less stringent assumption than assuming that the prediction 
errors are second-order stationary.

5.	 To obtain the variance of the prediction error of the spatial aver-
age, which is equal to the variance of the spatial average of the 
point support prediction errors, we first note that it is given by:

(7)

var

(
1

∣B ∣ ∫s∈B�(s) ds
)

=
1

|B|2 ∫s∈B∫u∈Bcov(�(s), �(u))dsdu
=

1

|B|2 ∫s∈B∫u∈B�(s) ⋅�(u) ⋅�(|s−u|)dsdu,
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where �(s) and �(u) are the standard deviations of the point support 
prediction errors at s and u, as obtained in step 2, and �(| s − u| ) is the 
value of the correlation function of the standardized prediction error at 
the separation distance between s and u, obtained in step 4.

6.	 Evaluation of the double integral in Equation (7) can be challeng-
ing, particularly because the block B itself is two-dimensional. 
However, an effective way of evaluating it is through Monte 
Carlo integration (Robert & Casella, 2004, chapter 3). While other 
numerical integration algorithms usually evaluate the integrand 
at a regular grid, Monte Carlo integration randomly chooses 
points at which the integrand is evaluated. Thus, we sample 
locations s and u independently from a uniform distribution 
defined over B, compute the integrand of Equation  (7) for this 
pair of locations, store the outcome, repeat the procedure many 
times and take the average of all outcomes. One must take 
care to use a sufficiently large Monte Carlo sample size, for 

which trial and error approaches can be used. In this paper, 
we used a Monte Carlo sample size of 10,000.

7.	 If the uncertainty of the block total instead of the block average is 
required then the result of step 6 must be multiplied by the square 
of the size of the study area, that is, by |B|2.

8.	 Both for the block average and block total it is useful to take the 
square root of the variance and compute and plot the standard devia-
tion of the prediction errors at block support because these are easier 
to interpret and have the same measurement units as the block pre-
dictions. Since the prediction error at block support is approximately 
normally distributed because of the central limit theorem, the lower 
and upper limits of a prediction interval of the block average or total 
can easily be computed, by subtracting and adding the product of the 
standard deviation and an appropriate z-score to the predicted block 
average or total. For ratio variables, these block support standard 
deviations may also be divided by the block support predictions to 
obtain a measure of the relative error (i.e. coefficient of variation).

F I G U R E  3  Topsoil organic carbon maps of kriging prediction (g kg−1), kriging standard deviation (g kg−1) and relative error (kriging standard 
deviation divided by prediction and multiplied by 100) for mainland France at point, departmental, regional and national support.
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4.2  |  Application to aboveground biomass mapping 
in Western Africa

We used a large dataset (n = 59,867) of tropical AGB in the Congo 
basin in Western Africa (Ploton et al., 2020). The dataset has aver-
age AGB estimates in Mg ha−1 with block support of 1 km × 1 km. It 
has a minimum value of 14.3, a median of 286.1, a mean of 290.1 
and a maximum value of 695.1 Mg ha−1. The estimates are based on 
measured trees in field plots, which are standardized using a compu-
tation scheme detailed in Ploton et al. (2020). We further collected 
a set of spatially exhaustive environmental covariates representing 
mean climate conditions (annual mean temperature, precipitation, 
mean cloud cover frequency, water vapour pressure, solar radiation 
and evapotranspiration), climate seasonality (temperature and pre-
cipitation seasonality, standard deviation of monthly water vapour 
pressure and of monthly solar radiation), extreme climate conditions 
(mean temperature of driest and warmest quarter, precipitation of 
wettest and driest month, aridity index), topography (elevation and 
slope), soil (topsoil clay and sand contents, carbon concentration 
and stocks), MODIS long-term average reflectance (RED, NIR, SWIR 
1–2) and vegetation (diversity of enhanced vegetation index, primary 
productivity). The sources of these covariates are provided in the 
supplementary data in Wadoux et al.  (2021). All covariates were 
projected to the World Mercator system (EPSG: 3395), cropped to 
the extent of the measurements and either aggregated or resampled 
with bilinear interpolation to have the same resolution with grid cells 
of 1 km × 1 km. Hereafter, only areas corresponding to moist forests 
in the ESA CCI Land Cover dataset (ESA CCI, 2016) were considered.

With the values of AGB and their matching values of environmen-
tal covariates we applied the methodology described in Section 4.1. 
We fitted two models: a generalized additive model (GAM) and a 
QRF model (Meinshausen, 2006). The GAM model was fitted with 
cubic regression splines as a smoothing term. The QRF model was 
fitted with 250 trees with other hyperparameters held to their de-
fault value. Results of a 10-fold cross-validation showed that both 
models had little or no prediction bias (mean error close to zero), a 

root mean squared error of 74.09 and 64.18 Mg ha−1, and a model 
efficiency coefficient (Janssen & Heuberger, 1995) of 0.37 and 0.54 
for GAM and RF, respectively. In the R programming language (R 
Core Team,  2022) we used the packages mgcv (Wood,  2022) and 
gratia (Simpson & Singmann, 2022) for GAM and ranger (Wright & 
Ziegler, 2017) for QRF. For ranger the stochastic simulation was done 
using what = function(x) sample in the predict function. We estimated 
the prediction error standard deviation by sampling 1000 times from 
the GAM and QRF conditional distributions. The term ‘conditional’ 
means that the distributions are conditional to the training data. In 
other words, we derive a probability distribution of the target value 
at prediction locations such that it accounts for the information 
at training locations. Next, we standardized the prediction errors 
at the 59,857 measurement locations by dividing each prediction 
error by the associated prediction error standard deviation obtained 
by 10-fold cross-validation. We fitted nested variogram models 
(Wackernagel,  2003, chapter 15). For RF, we used two spherical 
functions whereas for GAM the nested variogram consisted of one 
spherical function and two exponential functions. For both RF and 
GAM variograms the sills and nuggets were fitted manually, and the 
ranges were estimated by unweighted ordinary least-squares. The 
two variograms were then converted to a correlation function. This 
completed step 4 of the method presented in Section 4.1.

To estimate the standard deviation of the prediction error of the 
spatial average (steps 5–8 in Section 4.1), we implemented a Monte 
Carlo numerical integration algorithm to estimate the double inte-
gral in Equation  (7). To estimate the required Monte Carlo sample 
size, we used a trial-and-error approach where the AGB block stan-
dard deviation values for a given sample size were plotted against 
AGB block standard deviation values obtained with the same sample 
size, but using a different seed (after Nol et al., 2010, figure 7). We 
tested an increasing number of runs from 100 to 10,000. We consid-
ered 10,000 to be sufficient to obtain a stable outcome because the 
results were close to the 1:1 lines in a scatter plot.

Figure  4 shows the fitted nested variograms and correspond-
ing correlation functions for GAM and RF standardized prediction 

F I G U R E  4  Sample and fitted variograms of generalized additive model (GAM) and regression forest (RF) standardized prediction errors 
and correlograms obtained from the fitted variograms. Note that we zoomed in to short distances because these are most relevant.
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errors. Both cases showed a weak spatial autocorrelation of the stan-
dardized map errors. There was more spatial autocorrelation in the 
GAM error than in the RF error. The GAM variogram had a nugget of 
0.35 and partial sills of 0.49, 0.05 and 0.18, and range parameters of 
2.1, 7800 and 21 km for two exponential and one spherical function, 
respectively. The RF variogram had a nugget of 0.72 and partial sills 
of 0.16 and 0.03, and range parameters of 3.4 and 2245 km.

Figure 5 shows maps of the block standard deviation for the two 
models and various spatial aggregation levels (i.e. 10 km × 10 km, 
50 km × 50 km and 100 km × 100 km blocks, as well as for the six 
countries in the basin). Spatial gaps occur because only results for 
moist forests are shown; larger square blocks were only included if 
their center was a moist forest. Table 1 shows the values of the total 
AGB and uncertainty for the six countries and the Congo basin.

Figure 5 shows that the prediction uncertainty decreases with 
increasing block support. For instance, while the standard deviations 
are between 10 and 41 Mg ha−1 for blocks of 10 km × 10 km, the stan-
dard deviations are always smaller than 20 Mg ha−1 for country aver-
ages. Table 1 shows that GAM predicts higher values of total AGB 
than RF and that its uncertainty is also larger than that of RF. The dif-
ference in prediction is likely predominately caused by the different 
assumptions made by the GAM and RF models. For instance, GAM 
assumes that the response variable is a linear combination of smooth 

functions of the explanatory variables, while RF is a tree-based 
model that is much more flexible in modelling non-linear relations 
between the response and explanatory variables. The uncertainty of 
the predicted total AGB for the entire Congo basin is 1713 Tg for RF 
and 2365 Tg for GAM.

5  |  DISCUSSION

We explained that the uncertainty of spatial aggregates critically 
depends on the spatial autocorrelation of the map errors, and we 
described methods that account for this when predicting spatial 
averages and totals with associated uncertainty. We illustrated the 
methods with two real-world case studies. In the first case, we used 
kriging to obtain block prediction of OC at points, for French admin-
istrative units of increasing sizes, and for the whole of France. We 
found that the prediction uncertainty decreases when the support 
increases. This result is not new and corroborated by the existing lit-
erature (e.g. Szatmári et al., 2021). In the second case, we introduced 
a methodology to compute the uncertainty of spatial averages with-
out kriging. The methodology is applicable to any mapping model 
that quantifies the point support uncertainty, including machine 
learning. We found that the standard deviations of GAM were higher 

F I G U R E  5  Prediction error standard 
deviation maps (Mg ha−1) of the average 
above-ground biomass for various spatial 
aggregation levels, using the generalized 
additive model (GAM) and regression 
forest (RF) models.

 2041210x, 2023, 5, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14106 by M
ontpellier SupA

gro, W
iley O

nline L
ibrary on [04/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  1329Methods in Ecology and Evolu
onWADOUX and HEUVELINK

than those of RF when mapping AGB in the Congo basin. This was 
no surprise because GAM explained less of the AGB spatial varia-
tion than RF. The correlograms of the standardized prediction errors 
revealed correlation in the map errors. There was also decreasing 
uncertainty for aggregation at larger support. The uncertainty of the 
totals at the support of the country and for the whole Congo basin 
was small because the correlation in the map errors was weak, which 
resulted in having most uncertainty cancelling out when averaging. 
Note that in this paper we quantified uncertainty by standard de-
viations but that prediction intervals can easily be computed from 
them because the block averages and totals are approximately nor-
mally distributed. Thus, the methodology also supports significance 
testing.

The method presented in Section  4.1 incorporates a non-
stationary variance because it operates on standardized errors. The 
method is therefore more flexible than second-order stationary 
models that assume a constant variance (e.g. Wadoux et al., 2018), 
but it should be noted that the assumption that spatial correlation 
only depends on the separation distance between locations is still 
quite strong. In case of large datasets, flexibility could be further 
enhanced by allowing the correlation function to vary between re-
gions, for example, by letting the parameters of �(h) vary spatially. 
This would however require sufficient point data in each of the 
regions. In a case where the correlation length (i.e. the variogram 
range) is small, only short-distance pairs would be needed, because 
the correlation is zero for all distances larger than the range. This 
suggests that additional field work to collect data in undersampled 
regions is doable in many circumstances, also for large regions. In 
case of no or limited point data �(h) may be derived with expert 
knowledge, for which protocols exist (Truong et al., 2013). However, 
expert judgement is no substitute for real data and collecting ground 
truth data to quantify the correlation function of standardized map 
errors is preferred. Note also that while our procedure quantifies 
the uncertainty of the block aggregate properly because it accounts 
for spatial autocorrelation of point support prediction errors, it does 
not exploit the spatial autocorrelation to reduce the uncertainty 

by residual kriging, as was done in Section 3.1. This means that the 
Monte Carlo integration method leads to larger uncertainties than 
block kriging, which is the price paid for using a computationally 
much more feasible method.

While our aim was to show that uncertainty of spatial aggre-
gates cannot be assessed without accounting for the spatial auto-
correlation of the map error, statistical validation of the computed 
uncertainty of the block averages or totals is also important. We 
recommend that this is done in future studies. Vaysse et al. (2017) 
performed a qualitative validation of the aggregated results by visual 
inspection of the aggregated soil map results and comparison with 
an existing soil map of the same property, but they did not evaluate 
the prediction uncertainty. A statistical validation at block support 
may also be obtained by taking a new, post-mapping composite/bulk 
sample in the ‘block’. This is the preferred approach for validation. 
However, for applications where the block is very large (e.g. a bio-
climatic region or a country), there might not be enough repetitions 
for validation of the prediction uncertainty. If the block is the en-
tire study area there is only one measurement. This means that we 
cannot validate statistically whether the uncertainty was correctly 
assessed.

This paper took a model-based approach to quantify uncertainty 
of spatial averages and totals. However, it is important to note that 
the uncertainty may also be assessed with design-based inference (De 
Gruijter et al.,  2006), if at least a sample collected with probability 
sampling is available from each block. Uncertainty estimates derived 
from design-based inference are attractive because they are model-
free and design-unbiased. Two important conditions must be met to 
apply this approach. The first is that the inclusion probabilities of the 
sampling units that define the sample are deductible from the sam-
pling design, and the second is that each unit or point in the popula-
tion has a positive probability to be included in the sample. If one has a 
sample that satisfies these two conditions, inference about the target 
quantity (e.g. the average AGB or the average map error in a selected 
country) can be made with design-based inference (Brus et al., 2011).

Design-based statistical inference is usually used to estimate 
spatial averages or totals of environmental variables, such as the 
soil organic carbon stock or biomass, but it can also be used to esti-
mate spatial averages or totals of map errors. For instance, the map 
average or total would be computed to obtain the estimate, while 
the associated uncertainty is estimated from a probability sample 
of map errors. For large supports design-based inference might be 
a more attractive option than model-based inference because it 
does not make model assumptions, but in practice, the requirements 
for a probability sample are often not satisfied for large-scale and 
global applications (with some exceptions, for example, in forestry 
and land cover mapping). In such a case, a model-based inference is 
the only valid option. For instance, there is no dataset of the AGB in 
the Congo basin obtained with probability sampling. The differences 
between model-based and design-based statistical inference for 
spatial mapping are discussed in Brus (2022). This text also explains 
model-assisted estimation, which is a design-based approach that 
benefits from model predictions.

TA B L E  1  Total above-ground biomass and uncertainty 
(prediction ± standard deviation, in Teragram) obtained with 
the two prediction models and the methodology described in 
Section 4.1.

RF GAM

Angola 47 ± 3 36 ± 4

Cameroon 6066 ± 337 7205 ± 304

Central African 
Republic

1835 ± 98 1950 ± 112

Congo 6279 ± 301 6691 ± 330

Democratic Republic of 
the Congo

20,260 ± 933 23,288 ± 1110

Gabon 670 ± 41 667 ± 36

Equatorial Guinea 6707 ± 332 6954 ± 342

Total Congo basin 41,866 ± 1713 46,791 ± 2365

Abbreviations: GAM, generalized additive model; RF, regression forest.
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Finally, we emphasize that the methodology described in this 
paper to obtain estimates of the uncertainty of spatial averages and 
totals is an improvement compared to the existing literature, where 
either perfect or complete absence of spatial autocorrelation of map 
errors is assumed (e.g. in Harris et al., 2021; Plaza et al., 2018). As 
already mentioned in the Introduction, such assumptions are highly 
unrealistic and will lead to improper estimates of the uncertainty of 
spatial averages and totals, preventing assessment of the statistical 
significance of differences between regions or changes over time. To 
give one example, in the verification steps of Monitoring, Reporting 
and Verification studies (IPCC, 2022; UNFCCC, 2014) parties need 
to evaluate if climate mitigation actions were successful by show-
ing that a predicted increase of carbon stock for a region in a given 
time period is statistically significant. One valid approach for that is 
design-based statistical inference as explained above, but it requires 
sufficiently large probability samples at the start and end of the pe-
riod, which may be too costly. The alternative is to take a model-
based approach as done in this study, but then it is essential that 
uncertainties of spatial averages and totals are correctly derived, by 
accounting for spatial autocorrelation of map errors.

6  |  CONCLUSION

We have shown that the uncertainty of spatial aggregates strongly 
depends on the spatial autocorrelation of the map errors. This usu-
ally is not accounted for in the literature. We conclude that:

•	 Ignoring spatial autocorrelation in map errors leads to serious un-
derestimation of the uncertainty of spatial averages and totals.

•	 Solutions based on geostatistical modelling and block kriging are 
perfectly suited for uncertainty quantification of averages and 
totals, but such methods require geostatistical expertise, make 
stringent assumptions and are computationally inefficient for 
large-scale applications.

•	 Accounting for spatial autocorrelation in map errors is possible 
by mathematical integration of the variances and covariances of 
the point support prediction errors. We propose such integration 
over a spatial block or region using numerical Monte Carlo inte-
gration. We tested this method on a real-world case study and 
showed that it is feasible for large case studies.

•	 The method that we proposed does not require stationarity of the 
variance and allows non-Gaussian error distributions. With some 
modifications, the model-based methodology proposed here 
should also be applicable to categorical variables.

•	 We found that uncertainty of spatial averages decreased with in-
creasing support size, particularly when the spatial autocorrela-
tion of map errors is weak.

•	 In estimating the total aboveground biomass of our study area in 
the Congo basin, we found an average value of 41,866 Tg with a 
standard deviation of 1713 Tg (relative error of 4%) for the predic-
tion made with the random forest algorithm.

•	 The method presented in this paper is an essential tool for parties 
that need to assess the accuracy of predictions of spatial aver-
ages and totals and that need to evaluate whether differences in 
aggregated environmental variables or natural resources between 
regions or over time are statistically significant.

•	 In future studies, the spatial aggregation method based on Monte 
Carlo integration could be further improved by relaxing the sta-
tionarity assumption in the correlation function and by including 
expert knowledge in the estimation of the correlation function.
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